On the canonical quantization of anomalous $SU(N)$ chiral Yang–Mills models
Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 2, pp. 315-326 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Canonical quantization of anomalous $SU(N)$ Yang–Mills models is considered. It is shown that the gauge invariance of the quantum theory can be saved in spite of degeneracy of the Wess–Zumino action.
@article{TMF_1996_108_2_a8,
     author = {C. V. Sochichiu},
     title = {On the canonical quantization of anomalous~$SU(N)$ chiral {Yang{\textendash}Mills} models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {315--326},
     year = {1996},
     volume = {108},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_108_2_a8/}
}
TY  - JOUR
AU  - C. V. Sochichiu
TI  - On the canonical quantization of anomalous $SU(N)$ chiral Yang–Mills models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 315
EP  - 326
VL  - 108
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_108_2_a8/
LA  - ru
ID  - TMF_1996_108_2_a8
ER  - 
%0 Journal Article
%A C. V. Sochichiu
%T On the canonical quantization of anomalous $SU(N)$ chiral Yang–Mills models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 315-326
%V 108
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1996_108_2_a8/
%G ru
%F TMF_1996_108_2_a8
C. V. Sochichiu. On the canonical quantization of anomalous $SU(N)$ chiral Yang–Mills models. Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 2, pp. 315-326. http://geodesic.mathdoc.fr/item/TMF_1996_108_2_a8/

[1] L. S. Adler, Phys. Rev., 177:5(11) (1969), 2426–2438 | DOI

[2] W. A. Bardeen, Phys. Rev., 184:5 (1969), 1848–1859 | DOI

[3] D. J. Gross, R. Jackiw, Phys. Rev. D, 6:2 (1972), 477–493 | DOI

[4] R. Stora, “Algebraic structure and topological origin of anomalies”, Progress in gauge field theory, ed. H. Lehman, Plenum Press, New York, 1984, 87–102 | MR

[5] B. Zumino, “Algebraic origin of anomalies”, Relativity groups and topology, V. II, ed. B. S. de Witt and R. Stora, North Holland, Amsterdam, 1984, 1293 | MR

[6] L. D. Faddeev, Phys. Lett. B, 145:1–2 (1984), 81–86 | DOI | MR

[7] J. Mickelsson, Commun. Math. Phys., 97 (1985), 361 | DOI | MR | Zbl

[8] L. D. Faddeev, S. L. Shatashvili, TMF, 60:2 (1984), 206–217 | MR

[9] J. Wess, B. Zumino, Phys. Lett. B, 37:1 (1971), 95–97 | DOI | MR

[10] L. D. Faddeev, S. L. Shatashvili, Phys. Lett. B, 167:2 (1986), 225–228 | DOI | MR

[11] S. L. Shatashvili, TMF, 71:1 (1987), 40–45 | MR

[12] S. A. Frolov, A. A. Slavnov, C. Sochichiu, Int. J. Mod. Phys. A, 11 (1996), 745–758 | DOI | MR

[13] A. A. Slavnov, S. A. Frolov, K. Shokikiu, TMF, 105:2 (1995), 270–291 | MR | Zbl

[14] S. A. Frolov, A. A. Slavnov, C. Sochichiu, Phys. Lett. B, 301 (1993), 59–66 | DOI | MR

[15] A. Yu. Alekseev, Ya. Madaichik, L. D. Faddeev, S. L. Shatashvili, TMF, 73:2 (1987), 187–190 | MR

[16] M. Henneaux, A. Slavnov, Phys. Lett. B, 338 (1994), 47–50 | DOI | MR