Fermion models with quasilocal interactions near polycritical point
Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 2, pp. 276-293 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Fermion models with selfinteractions including derivatives of fields are investigated in the strong coupling regime when several coupling constants are matched to thier critical values. The existence of three phases with different correlation lengths is established in the scalar channel model near tricritical point. The special phase of dynamical P-parity breaking is found. The mass spectra of composite scalar and pseudoscalar bosons are obtained in the large-log approximation.
@article{TMF_1996_108_2_a5,
     author = {A. A. Andrianov and V. A. Andrianov and V. L. Yudichev},
     title = {Fermion models with quasilocal interactions near polycritical point},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {276--293},
     year = {1996},
     volume = {108},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_108_2_a5/}
}
TY  - JOUR
AU  - A. A. Andrianov
AU  - V. A. Andrianov
AU  - V. L. Yudichev
TI  - Fermion models with quasilocal interactions near polycritical point
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 276
EP  - 293
VL  - 108
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_108_2_a5/
LA  - ru
ID  - TMF_1996_108_2_a5
ER  - 
%0 Journal Article
%A A. A. Andrianov
%A V. A. Andrianov
%A V. L. Yudichev
%T Fermion models with quasilocal interactions near polycritical point
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 276-293
%V 108
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1996_108_2_a5/
%G ru
%F TMF_1996_108_2_a5
A. A. Andrianov; V. A. Andrianov; V. L. Yudichev. Fermion models with quasilocal interactions near polycritical point. Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 2, pp. 276-293. http://geodesic.mathdoc.fr/item/TMF_1996_108_2_a5/

[1] V. N. Popov, Kontinualnye integraly v kvantovoi teorii polya i statisticheskoi fizike, Atomizdat, M., 1976 | MR

[2] K. Wilson, J. Kogut, Phys. Rep., C12 (1974), 75 | DOI | Zbl

[3] T. Eguchi, Phys. Rev., D14 (1976), 2755 ; M. K. Volkov, Ann. Phys. (N.Y.), 1984, no. 157, 282 ; T. Hatsuda, T. Kunihiro, Phys. Lett., B271 (1984), 188; D. Ebert, H. Reinhard, Nucl. Phys., B271 (1986), 188 ; A. Dhar, R. Shankar, S. R. Wadia, Phys. Rev., D3 (1985), 3256 ; V. Bernard, R. L. Jaffe, U.-G. Meissner, Nucl. Phys., B308 (1988), 753 ; M. Wakamatsu, W. Weise, Z. Phys.–Hadrons and Nuclei, A331 (1988), 173 | MR | DOI | DOI | MR | DOI

[4] M. Suzuki, Mod. Phys. Lett., A5:10 (1990), 1205–1211 ; A. Hasenfratz, P. Hasenfratz, K. Jansen, J. Kuti, Y. Shen, Nucl. Phys., D365:1 (1991), 79–96 | DOI | DOI | MR

[5] A. A. Andrianov, V. A. Andrianov, Int. J. Mod. Phys., 1993, no. 8, 1981 | DOI

[6] L. Montanet et al., Phys. Rev. Part 1, D50 (1994)

[7] Y. Nambu, G. Jona-Lasinio, Phys. Rev., 1961, no. 122, 345 ; D. J. Gross, A. Neveu, Phys. Rev., D10 (1974), 3235 | DOI | MR

[8] A. A. Andrianov, V. A. Andrianov, Z. Phys. C–Particles and Fields, 1992, no. 55, 435 ; А. А. Андрианов, В. А. Андрианов, ТМФ, 93 (1992), 67 ; Bijnens, C. Bruno, E. de Rafael, Nucl. Phys., B390 (1993), 501 | DOI | DOI

[9] V. A. Miransky, M. Tanabashi, K. Yamawaki, Mod. Phys. Lett., A4 (1989), 1043 | DOI

[10] W. A. Bardeen, C. T. Hill, M. Lindner, Phys. Rev., D41 (1990), 1647 ; M. Lindner, Int. J. Mod. Phys., 8:13 (1993), 2167–2239 | DOI | MR

[11] A. A. Andrianov, V. A. Andrianov, Voprosy kvantovoi teorii polya i statisticheskoi fiziki, Zap. nauchn. sem. POMI, 209, no. 12, 1994; A. A. Andrianov, V. A. Andrianov, Nucl. Phys., 39B (1995), 257–259

[12] Yu. Ivanshin et al., Nuovo Cim., 107 A:12 (1994), 2855–2858 | DOI

[13] E. Elizalde, S. Leseduarte, S. D. Odintsov, Phys. Lett., B347 (1995), 33–40 | DOI