On some integrable generalizations of the continuous Toda system
Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 2, pp. 193-204 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper, we obtain some integrable generalizations of the continuous Toda system, generated by a flat connection form taking values in higher grading subspaces of the algebra of the area-preserving diffeomorphism of the torus $T^2$, and construct their general solutions. The grading condition which we use here, imposed on the connection, can be realized in terms of some holomorphic distributions on the corresponding homogeneous spaces.
@article{TMF_1996_108_2_a1,
     author = {M. V. Saveliev},
     title = {On some integrable generalizations of the continuous {Toda} system},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {193--204},
     year = {1996},
     volume = {108},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_108_2_a1/}
}
TY  - JOUR
AU  - M. V. Saveliev
TI  - On some integrable generalizations of the continuous Toda system
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 193
EP  - 204
VL  - 108
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_108_2_a1/
LA  - ru
ID  - TMF_1996_108_2_a1
ER  - 
%0 Journal Article
%A M. V. Saveliev
%T On some integrable generalizations of the continuous Toda system
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 193-204
%V 108
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1996_108_2_a1/
%G ru
%F TMF_1996_108_2_a1
M. V. Saveliev. On some integrable generalizations of the continuous Toda system. Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 2, pp. 193-204. http://geodesic.mathdoc.fr/item/TMF_1996_108_2_a1/

[1] M. Adams, T. Ratiu, R. Schmid, Infinite Dimensional Groups with Applications, ed. V. Kac, Springer-Verlag, New York, 1985 | MR

[2] A. V. Razumov, M. V. Saveliev, Comm. Anal. Geom., 2 (1994), 461 | DOI | MR | Zbl

[3] C. Boyer, D. Finley, J. Math. Phys., 23 (1982), 1126 | DOI | MR | Zbl

[4] A. N. Leznov, M. V. Saveliev, Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems, Progress in Physics, Birkhauser-Verlag, Basel–New York, 1992 | MR | Zbl

[5] M. V. Saveliev, A. M. Vershik, Comm. Math. Phys., 126 (1989), 367 | DOI | MR | Zbl

[6] M. V. Saveliev, Sov. J. Theor. Math. Phys., 92 (1992), 457 | DOI | MR | Zbl

[7] M. V. Saveliev, Comm. Math. Phys., 121 (1989), 283 | DOI | MR | Zbl

[8] D. A. Leites, A. N. Leznov, M. V. Saveliev, Bulg. Acad. Sci. Dokl., 35 (1982), 435 | MR | Zbl

[9] R. S. Strichartz, J. Funct. Anal., 72 (1987), 320 | DOI | MR | Zbl

[10] V. Arnold, Annales de l'Institut Fourier, 16 (1966), 319 | DOI | Zbl

[11] J.-L. Gervais, A. Neveu, Nucl. Phys., B199 (1982), 59 | DOI | MR

[12] E. Corrigan, P. E. Dorey, R. H. Rietdijk, R. Sasaki, Phys. Lett., B333 (1994), 83 | DOI | MR

[13] M. V. Saveliev, Mod. Phys. Lett., 5A (1990), 2223 | DOI | MR | Zbl

[14] D. P. Zhelobenko, Representations of Reductive Lie Algebras, Nauka, Moscow, 1994 | MR | Zbl

[15] V. G. Kac, D. H. Kazhdan, Adv. Math., 24 (1979), 97 | DOI | MR

[16] V. G. Kac, Infinite Dimensional Lie Algebras, Cambridge Univ. Press, Cambridge, 1990 | MR