On some integrable generalizations of the continuous Toda system
Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 2, pp. 193-204

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we obtain some integrable generalizations of the continuous Toda system, generated by a flat connection form taking values in higher grading subspaces of the algebra of the area-preserving diffeomorphism of the torus $T^2$, and construct their general solutions. The grading condition which we use here, imposed on the connection, can be realized in terms of some holomorphic distributions on the corresponding homogeneous spaces.
@article{TMF_1996_108_2_a1,
     author = {M. V. Saveliev},
     title = {On some integrable generalizations of the continuous {Toda} system},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {193--204},
     publisher = {mathdoc},
     volume = {108},
     number = {2},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_108_2_a1/}
}
TY  - JOUR
AU  - M. V. Saveliev
TI  - On some integrable generalizations of the continuous Toda system
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 193
EP  - 204
VL  - 108
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_108_2_a1/
LA  - ru
ID  - TMF_1996_108_2_a1
ER  - 
%0 Journal Article
%A M. V. Saveliev
%T On some integrable generalizations of the continuous Toda system
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 193-204
%V 108
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1996_108_2_a1/
%G ru
%F TMF_1996_108_2_a1
M. V. Saveliev. On some integrable generalizations of the continuous Toda system. Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 2, pp. 193-204. http://geodesic.mathdoc.fr/item/TMF_1996_108_2_a1/