On some integrable generalizations of the continuous Toda system
Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 2, pp. 193-204
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper, we obtain some integrable generalizations of the continuous Toda system, generated by a flat connection form taking values in higher grading subspaces of the algebra of the area-preserving diffeomorphism of the torus $T^2$, and construct their general solutions. The grading condition which we use here, imposed on the connection, can be realized in terms of some holomorphic distributions on the corresponding homogeneous spaces.
@article{TMF_1996_108_2_a1,
author = {M. V. Saveliev},
title = {On some integrable generalizations of the continuous {Toda} system},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {193--204},
publisher = {mathdoc},
volume = {108},
number = {2},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1996_108_2_a1/}
}
M. V. Saveliev. On some integrable generalizations of the continuous Toda system. Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 2, pp. 193-204. http://geodesic.mathdoc.fr/item/TMF_1996_108_2_a1/