Quantization of the external algebra on a~Poisson--Lie group
Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 1, pp. 84-100
Voir la notice de l'article provenant de la source Math-Net.Ru
The external algebra $\mathcal M$ on $GL(N)$ is show to be equipped with graded Poisson brackets compatible with the group action. The corresponding Poisson–Hopf superalgebra structures on $\mathcal M$ are classified. They form two families, each of them is parametrized by two continuous parameters $(\alpha,\beta)$. It is shown that the structures from the first family with $\alpha=0=\beta$ appear as the semiclassical limit of the bicovariant differential calculi on the quantum linear group $GL_q(N)$.
@article{TMF_1996_108_1_a6,
author = {G. E. Arutyunov and P. B. Medvedev},
title = {Quantization of the external algebra on {a~Poisson--Lie} group},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {84--100},
publisher = {mathdoc},
volume = {108},
number = {1},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a6/}
}
TY - JOUR AU - G. E. Arutyunov AU - P. B. Medvedev TI - Quantization of the external algebra on a~Poisson--Lie group JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1996 SP - 84 EP - 100 VL - 108 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a6/ LA - ru ID - TMF_1996_108_1_a6 ER -
G. E. Arutyunov; P. B. Medvedev. Quantization of the external algebra on a~Poisson--Lie group. Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 1, pp. 84-100. http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a6/