Quantization of the external algebra on a Poisson–Lie group
Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 1, pp. 84-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The external algebra $\mathcal M$ on $GL(N)$ is show to be equipped with graded Poisson brackets compatible with the group action. The corresponding Poisson–Hopf superalgebra structures on $\mathcal M$ are classified. They form two families, each of them is parametrized by two continuous parameters $(\alpha,\beta)$. It is shown that the structures from the first family with $\alpha=0=\beta$ appear as the semiclassical limit of the bicovariant differential calculi on the quantum linear group $GL_q(N)$.
@article{TMF_1996_108_1_a6,
     author = {G. E. Arutyunov and P. B. Medvedev},
     title = {Quantization of the external algebra on {a~Poisson{\textendash}Lie} group},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {84--100},
     year = {1996},
     volume = {108},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a6/}
}
TY  - JOUR
AU  - G. E. Arutyunov
AU  - P. B. Medvedev
TI  - Quantization of the external algebra on a Poisson–Lie group
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 84
EP  - 100
VL  - 108
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a6/
LA  - ru
ID  - TMF_1996_108_1_a6
ER  - 
%0 Journal Article
%A G. E. Arutyunov
%A P. B. Medvedev
%T Quantization of the external algebra on a Poisson–Lie group
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 84-100
%V 108
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a6/
%G ru
%F TMF_1996_108_1_a6
G. E. Arutyunov; P. B. Medvedev. Quantization of the external algebra on a Poisson–Lie group. Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 1, pp. 84-100. http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a6/

[1] I. Ya. Aref'eva, I. V. Volovich, Mod. Phys. Lett., 6A (1991), 893 | DOI | MR | Zbl

[2] I. Ya. Aref'eva, I. V. Volovich, Phys. Lett., 264B (1991), 62 | DOI | MR

[3] T. Brzezinski, S. Majid, Quantum Group Gauge Theory on Classical Spaces, Prep. Univ. of Cambridge. DAMTP/92-51, 1992

[4] A. P. Isaev, Z. Popovicz, Phys. Lett., 307B (1993), 353 | DOI | MR

[5] I. Ya. Arefeva, G. E. Arutyunov, Tr. MI RAN im. V. A. Steklova, 203, 1994, 202 | Zbl

[6] S. Woronowicz, Commun. Math. Phys., 111 (1986), 613 | DOI | MR

[7] B. Jurco, Lett. Math. Phys., 22 (1991), 177 | DOI | MR | Zbl

[8] U. Carow-Watamura, M. Schlieker, S. Watamura, W. Weich, Commun. Math. Phys., 142 (1991), 605 | DOI | MR | Zbl

[9] Yu. Manin, Bonn Prep. MPI/91-47, 1991

[10] G. Maltsiniotis, C. R. Acad. Sci. Paris, 331 (1990), 831 | MR

[11] A. Schirrmacher, Munich Prep. MPI-PTH-91-117, 1991 | Zbl

[12] A. Sudbery, York Prep. PRINT-91-0498(YORK), 1991 | Zbl

[13] A. Sudbery, York Prep. PRINT-92-1(YORK), 1992

[14] P. Schupp, P. Watts, B. Zumino, Cartan Calculus for Hopf Algebras and Quantum Groups, Prep. NSF-ITP-93-75, 1993 | Zbl

[15] N. Yu. Reshetikhin, L. A. Takhtadzhyan, L. D. Faddeev, Algebra i analiz, 1:1 (1989), 178–206

[16] V. G. Drinfel'd, Proc. Int. Congr. Math. Berkley, V. 1, 1986, 798

[17] E. K. Sklyanin, Funkts. Anal. Prilozh., 16:4 (1982), 27 | MR | Zbl

[18] E. K. Sklyanin, Funkts. Anal. Prilozh., 17:4 (1983), 34 | MR | Zbl

[19] M. A. Semenov-Tian-Shansky, Publ. RIMS Kyoto Univ., 21:6 (1985), 1237 | DOI | MR

[20] N. Yu Reshetikhin, M. A. Semenov-Tian-Shansky, Geometry and Physics, 5:4 (1988), 533 | DOI | MR | Zbl

[21] G. E. Arutyunov, P. B. Medvedev, Quantization of the external algebra on a Poisson–Lie group, Prep. SMI-11-93, 1993; E-print hep-th/9311096

[22] P. Schupp, P. Watts, B. Zumino, Lett. Math. Phys., 25 (1992), 139 | DOI | MR | Zbl

[23] A. P. Isaev, P. N. Pyatov, Phys. Lett., 179A (1993), 81 | DOI | MR

[24] A. Sudbery, Math. Proc. Camb. Phyl. Soc., 114 (1993), 111 | DOI | MR | Zbl

[25] T. Brzezinski, Lett. Math. Phys., 27 (1993), 287 | DOI | MR | Zbl

[26] A. Connes, Publ. Math. IHES, 62 (1986), 41 | DOI

[27] A. P. Isaev, P. N. Pyatov, Covariant differential complexes on quantum linear groups , 1993 E-print HEP-TH/931112 | MR