Quantization of the external algebra on a~Poisson--Lie group
Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 1, pp. 84-100

Voir la notice de l'article provenant de la source Math-Net.Ru

The external algebra $\mathcal M$ on $GL(N)$ is show to be equipped with graded Poisson brackets compatible with the group action. The corresponding Poisson–Hopf superalgebra structures on $\mathcal M$ are classified. They form two families, each of them is parametrized by two continuous parameters $(\alpha,\beta)$. It is shown that the structures from the first family with $\alpha=0=\beta$ appear as the semiclassical limit of the bicovariant differential calculi on the quantum linear group $GL_q(N)$.
@article{TMF_1996_108_1_a6,
     author = {G. E. Arutyunov and P. B. Medvedev},
     title = {Quantization of the external algebra on {a~Poisson--Lie} group},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {84--100},
     publisher = {mathdoc},
     volume = {108},
     number = {1},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a6/}
}
TY  - JOUR
AU  - G. E. Arutyunov
AU  - P. B. Medvedev
TI  - Quantization of the external algebra on a~Poisson--Lie group
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 84
EP  - 100
VL  - 108
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a6/
LA  - ru
ID  - TMF_1996_108_1_a6
ER  - 
%0 Journal Article
%A G. E. Arutyunov
%A P. B. Medvedev
%T Quantization of the external algebra on a~Poisson--Lie group
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 84-100
%V 108
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a6/
%G ru
%F TMF_1996_108_1_a6
G. E. Arutyunov; P. B. Medvedev. Quantization of the external algebra on a~Poisson--Lie group. Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 1, pp. 84-100. http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a6/