Some properties of stationary states of two-level systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 1, pp. 69-78
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that some function $J(x)$ is a constant at any point on $x$-axis, when a change of the potential energy of two-level system is arbitrary. The estimations of the LCAO method's accuracy are presented for the wave functions of a one-dimensional two-level system.
@article{TMF_1996_108_1_a4,
author = {V. A. Burdov},
title = {Some properties of stationary states of two-level systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {69--78},
year = {1996},
volume = {108},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a4/}
}
V. A. Burdov. Some properties of stationary states of two-level systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 1, pp. 69-78. http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a4/
[1] V. V. Kapaev, Yu. V. Kopaev, N. V. Kornyakov, Pisma v ZhETF, 58 (1993), 901
[2] V. E. Zhitomirskii, Pisma v ZhETF, 55 (1992), 657
[3] F. Stern, S. das Sarma, Phys. Rev., B30 (1984), 840 | DOI
[4] M. G. Veselov, Elementarnaya kvantovaya teoriya atomov i molekul, Fizmatgiz, M., 1962 | Zbl
[5] Ch. Koulson, Valentnost, Mir, M., 1965
[6] J. W. Corbett, Am. J. Phys., 31 (1963), 521 | DOI
[7] W. A. Phillips, Proc. Roy. Soc., A319 (1970), 565 | DOI
[8] L. D. Landau, E. M. Livshits, Kvantovaya mekhanika, Nauka, M., 1989 | MR