Some properties of stationary states of two-level systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 1, pp. 69-78 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that some function $J(x)$ is a constant at any point on $x$-axis, when a change of the potential energy of two-level system is arbitrary. The estimations of the LCAO method's accuracy are presented for the wave functions of a one-dimensional two-level system.
@article{TMF_1996_108_1_a4,
     author = {V. A. Burdov},
     title = {Some properties of stationary states of two-level systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {69--78},
     year = {1996},
     volume = {108},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a4/}
}
TY  - JOUR
AU  - V. A. Burdov
TI  - Some properties of stationary states of two-level systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 69
EP  - 78
VL  - 108
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a4/
LA  - ru
ID  - TMF_1996_108_1_a4
ER  - 
%0 Journal Article
%A V. A. Burdov
%T Some properties of stationary states of two-level systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 69-78
%V 108
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a4/
%G ru
%F TMF_1996_108_1_a4
V. A. Burdov. Some properties of stationary states of two-level systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 1, pp. 69-78. http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a4/

[1] V. V. Kapaev, Yu. V. Kopaev, N. V. Kornyakov, Pisma v ZhETF, 58 (1993), 901

[2] V. E. Zhitomirskii, Pisma v ZhETF, 55 (1992), 657

[3] F. Stern, S. das Sarma, Phys. Rev., B30 (1984), 840 | DOI

[4] M. G. Veselov, Elementarnaya kvantovaya teoriya atomov i molekul, Fizmatgiz, M., 1962 | Zbl

[5] Ch. Koulson, Valentnost, Mir, M., 1965

[6] J. W. Corbett, Am. J. Phys., 31 (1963), 521 | DOI

[7] W. A. Phillips, Proc. Roy. Soc., A319 (1970), 565 | DOI

[8] L. D. Landau, E. M. Livshits, Kvantovaya mekhanika, Nauka, M., 1989 | MR