Nonlocal hydrodynamics in the quantum field model $\varphi^4$
Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 1, pp. 50-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A procedure of passing from the quantum statistic mechanics to hydrodynamics previously found by the author is applied to the quantum field model $\varphi^4$. In a certain class of external forces the equations of the quantum many-body system are shown to be equivalent to the equations of the nonlocal hydrodynamics. Hydrodynamic nonlocalities arising in the constituent relations are expressed via Green's functions for currents. By using the general symmetry properties a number of properties for the nonlocality kernels is deduced. In particular, conditions related to dissipativity and to $T$-invariance of the $\varphi 4$ model (an analogue of Onsager's relations) are established. The connection of the classical transport coefficients with the nonlocality kernels is found. An algorithm for calculating the constituent relations by the perturbation theory on a base of the technique of temperature Green's functions is described.
@article{TMF_1996_108_1_a3,
     author = {O. Yu. Dinariev},
     title = {Nonlocal hydrodynamics in the quantum field model~$\varphi^4$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {50--68},
     year = {1996},
     volume = {108},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a3/}
}
TY  - JOUR
AU  - O. Yu. Dinariev
TI  - Nonlocal hydrodynamics in the quantum field model $\varphi^4$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 50
EP  - 68
VL  - 108
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a3/
LA  - ru
ID  - TMF_1996_108_1_a3
ER  - 
%0 Journal Article
%A O. Yu. Dinariev
%T Nonlocal hydrodynamics in the quantum field model $\varphi^4$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 50-68
%V 108
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a3/
%G ru
%F TMF_1996_108_1_a3
O. Yu. Dinariev. Nonlocal hydrodynamics in the quantum field model $\varphi^4$. Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 1, pp. 50-68. http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a3/

[1] D. N. Zubarev, Neravnovesnaya statisticheskaya termodinamika, Nauka, M., 1971

[2] A. I. Akhiezer, S. V. Peletminskii, Metody statisticheskoi fiziki, Nauka, M., 1977 | MR

[3] W. A. Hiscock, L. Lindblom, Phys. Rev. D, 31:4 (1985), 725–733 | DOI | MR

[4] B. Carter, Lect. Notes in Math., 1385, 1989, 1–64 | DOI | MR | Zbl

[5] W. Israel, Lect. Notes in Math., 1385, 1989, 152–210 | DOI | MR

[6] O. Yu. Dinariev, DAN SSSR, 301:5 (1988), 1095–1097 | MR

[7] O. Yu. Dinariev, PMM, 56:2 (1992), 250–259 | MR | Zbl

[8] O. Yu. Dinariev, Izv. vuzov. Fizika, 1993, no. 5, 13–18 | MR

[9] O. Yu. Dinariev, ZhETF, 106:1(7) (1994), 161–171 | MR

[10] O. Yu. Dinariev, ZhETF, 107:6 (1995), 1877–1894

[11] O. Yu. Dinariev, ZhETF, 107:5 (1995), 1573–1586 | MR

[12] A. D. Linde, Fizika elementarnykh chastits i inflyatsionnaya kosmologiya, Nauka, M., 1990 | MR

[13] Yu. S. Gangus, A. V. Prozorkevich, S. A. Smolyanskii, TMF, 35:1 (1978), 68–75

[14] A. Hosoya, M. Sakagami, M. Takao, Ann. of Phys., 154:1 (1984), 229–252 | DOI | MR

[15] Zh. Emkh, Algebraicheskie metody v statisticheskoi mekhanike i kvantovoi teorii polya, Mir, M., 1976 | MR

[16] N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, I. T. Todorov, Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987 | MR

[17] A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinskii, Metody kvantovoi teorii polya v statisticheskoi fizike, Fizmatgiz, M., 1962 | MR | Zbl

[18] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. 9. Statisticheskaya fizika. Ch. 2. Teoriya kondensirovannogo sostoyaniya, Nauka, M., 1978 | MR

[19] O. Yu. Dinariev, DAN SSSR, 309:3 (1989), 615–618 | MR

[20] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. 6. Gidrodinamika, Nauka, M., 1986 | MR

[21] C. Eckart, Phys. Rev., 58:10 (1940), 919–924 | DOI | Zbl

[22] U. Kraemmer, M. Kreuzer, A. Rebhan, H. Schulz, Lect. Notes in Phys., 361, 1990, 285–295 | DOI