On properties of discrete and continuous spectra of Dirac radial equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 1, pp. 36-49

Voir la notice de l'article provenant de la source Math-Net.Ru

For characterizing the spectrum of Dirac radial equation we introduce the notion of the quantum defect $\delta_k$, which generalizes the corresponding notion for Schrödinger radial equation. The existence of $\delta_k$ is proved and the formulas for calculating $\delta_k$ are received for a broad class of the potentials.
@article{TMF_1996_108_1_a2,
     author = {L. A. Sakhnovich},
     title = {On properties of discrete and continuous spectra of {Dirac} radial equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {36--49},
     publisher = {mathdoc},
     volume = {108},
     number = {1},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a2/}
}
TY  - JOUR
AU  - L. A. Sakhnovich
TI  - On properties of discrete and continuous spectra of Dirac radial equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 36
EP  - 49
VL  - 108
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a2/
LA  - ru
ID  - TMF_1996_108_1_a2
ER  - 
%0 Journal Article
%A L. A. Sakhnovich
%T On properties of discrete and continuous spectra of Dirac radial equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 36-49
%V 108
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a2/
%G ru
%F TMF_1996_108_1_a2
L. A. Sakhnovich. On properties of discrete and continuous spectra of Dirac radial equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 1, pp. 36-49. http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a2/