On properties of discrete and continuous spectra of Dirac radial equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 1, pp. 36-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For characterizing the spectrum of Dirac radial equation we introduce the notion of the quantum defect $\delta_k$, which generalizes the corresponding notion for Schrödinger radial equation. The existence of $\delta_k$ is proved and the formulas for calculating $\delta_k$ are received for a broad class of the potentials.
@article{TMF_1996_108_1_a2,
     author = {L. A. Sakhnovich},
     title = {On properties of discrete and continuous spectra of {Dirac} radial equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {36--49},
     year = {1996},
     volume = {108},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a2/}
}
TY  - JOUR
AU  - L. A. Sakhnovich
TI  - On properties of discrete and continuous spectra of Dirac radial equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 36
EP  - 49
VL  - 108
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a2/
LA  - ru
ID  - TMF_1996_108_1_a2
ER  - 
%0 Journal Article
%A L. A. Sakhnovich
%T On properties of discrete and continuous spectra of Dirac radial equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 36-49
%V 108
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a2/
%G ru
%F TMF_1996_108_1_a2
L. A. Sakhnovich. On properties of discrete and continuous spectra of Dirac radial equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 1, pp. 36-49. http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a2/

[1] A. Zommerfeld, Stroenie atoma i spektry, T. 1, Gostekhizdat, M., 1956

[2] L. A. Sakhnovich, Izv. AN SSSR, ser matem., 30:6 (1966), 1297–1310 | MR | Zbl

[3] D. R. Yafaev, TMF, 11:1 (1972), 78–92 | MR

[4] V. V. Obraztsov, DAN Ukr. SSR (ser. A), 1972, no. 8, 710–713 | Zbl

[5] L. A. Sakhnovich, DAN SSSR, 185:1 (1969), 61–64

[6] Atomy v astrofizike, Mir, M., 1986

[7] R. Bellman, Teoriya ustoichivosti reshenii differentsialnykh uravnenii, IL, M., 1954 | MR

[8] E. A. Koddington, N. Levinson, Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958

[9] G. Bete, E. Solpiter, Kvantovaya mekhanika s odnim i dvumya elektronami, Fizmatgiz, M., 1960

[10] V. Alfaro, T. Redzhe, Potentsialnoe rasseyanie, Mir, M., 1966

[11] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, Fizmatgiz, M., 1963

[12] V. B. Berestetskii, E. M. Lifshits, L. P. Pitaevskii, Relyativistskaya kvantovaya teoriya, Ch. 1, Nauka, M., 1968 | MR

[13] E. Ch. Titchmarsh, Razlozheniya po sobstvennym funktsiyam, T. 2, IL, M., 1961 | MR