On properties of discrete and continuous spectra of Dirac radial equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 1, pp. 36-49
Voir la notice de l'article provenant de la source Math-Net.Ru
For characterizing the spectrum of Dirac radial equation we introduce the notion of the quantum defect $\delta_k$, which generalizes the corresponding notion for Schrödinger radial equation. The existence of $\delta_k$ is proved and the formulas for calculating $\delta_k$
are received for a broad class of the potentials.
@article{TMF_1996_108_1_a2,
author = {L. A. Sakhnovich},
title = {On properties of discrete and continuous spectra of {Dirac} radial equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {36--49},
publisher = {mathdoc},
volume = {108},
number = {1},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a2/}
}
TY - JOUR AU - L. A. Sakhnovich TI - On properties of discrete and continuous spectra of Dirac radial equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1996 SP - 36 EP - 49 VL - 108 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a2/ LA - ru ID - TMF_1996_108_1_a2 ER -
L. A. Sakhnovich. On properties of discrete and continuous spectra of Dirac radial equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 1, pp. 36-49. http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a2/