Analytic representation for the equation of state in classical statistical mechanics
Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 1, pp. 135-158 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the system of classical particles interacting by pair short-range forces the explicitly convergent expansions on usual and complementary density and the contour integral representations are constructed for the all-round compression modulus, the modulus being sufficient to describe all the thermodynamic properties and being tentatively single-valued in the vicinity of the phase transition point. With the help of those the analytic representations of the equation of state as well as specific configuration integral are found. The elaborated technique is approved on the exactly solved model – the theory of the Van der Waals substance being a model “substance” for which the Van der Waals equation is the exact equation of state.
@article{TMF_1996_108_1_a10,
     author = {I. I. Ivanchik},
     title = {Analytic representation for the equation of state in classical statistical mechanics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {135--158},
     year = {1996},
     volume = {108},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a10/}
}
TY  - JOUR
AU  - I. I. Ivanchik
TI  - Analytic representation for the equation of state in classical statistical mechanics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 135
EP  - 158
VL  - 108
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a10/
LA  - ru
ID  - TMF_1996_108_1_a10
ER  - 
%0 Journal Article
%A I. I. Ivanchik
%T Analytic representation for the equation of state in classical statistical mechanics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 135-158
%V 108
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a10/
%G ru
%F TMF_1996_108_1_a10
I. I. Ivanchik. Analytic representation for the equation of state in classical statistical mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 108 (1996) no. 1, pp. 135-158. http://geodesic.mathdoc.fr/item/TMF_1996_108_1_a10/

[1] G. I. Kalmykov, TMF, 84:2 (1990), 279–289 ; 92:1 (1992), 139–149 ; Дискретная математика, 4:2 (1992), 66–73 | MR | MR | MR | Zbl

[2] I. I. Ivanchik, Kovariantnyi metod summirovaniya diagramm v klassicheskoi statisticheskoi mekhanike, Dis. dokt. fiz.-matem. nauk, Fizicheskii institut imeni P.N.Lebedeva AN SSSR, M., 1987; I. I. Ivanchik, Generalized Mayer Series in Classical Statistical Mechanics, Nova Science Publishers, Inc., New York, 1993 | MR

[3] Dzh. Maier, M. Geppert-Maier, Statisticheskaya mekhanika, Mir, M., 1980

[4] A. Isikhara, Statisticheskaya fizika, Mir, M., 1973 | MR

[5] J. D. Van der Waals, Doctoral Dissertation, University of Leiden, 1873

[6] Enriko Fermi, Termodinamika, Per. s angl., Izd-vo Kharkovskogo universiteta, Kharkov, 1969

[7] T. Morita, Progr. Theor. Phys., 20:6 (1958), 920–938 ; 21:3 (1959), 361–382 ; 23:1 (1960), 175–177 ; 5, 829–845 ; J. M. J. van Leeuwen, J. Groeneveld, J. de Boer, Physica, 25:9 (1959), 792–808 ; T. Morita, K. Hiroike, Progr. Theor. Phys., 23:6 (1960), 1003–1027 ; C. de Dominicis, J. Math. Phys., 3:5 (1962), 983–1002 ; А. Н. Васильев, Функциональные методы в квантовой теории поля и статистике, Изд. ЛГУ, Л., 1976; Г. А. Мартынов, ДАН СССР, 218:4 (1974), 814–817 ; И. И. Иванчик, ДАН СССР, 296:2 (1987), 341–344 ; 300:3 (1988), 596–600 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl | DOI | MR | Zbl | DOI | MR | MR

[8] F. Kharari, E. M. Palmer, Perechisleniya grafov, Mir, M., 1977

[9] O. Penrose, J. Math. Phys., 4:10 (1963), 1312–1319 | DOI | MR

[10] D. Ryuel, Statisticheskaya mekhanika. Strogie rezultaty, Per. s angl., ed. R. A. Minlos, Mir, M., 1971

[11] M. Dyuno, B. Suiar, Gibbsovskie sostoyaniya v statisticheskoi fizike, Sb., Per. s angl., ed. R. A. Minlos, Mir, M., 1978, 89–106 | MR

[12] M. Dyuno, B. Suiar, D. Yagolnitser, Gibbsovskie sostoyaniya v statisticheskoi fizike, Sb., Per. s angl., ed. R. A. Minlos, Mir, M., 1978, 107–121 | MR

[13] V. A. Malyshev, R. A. Minlos, Gibbsovskie sluchainye polya, Nauka, M., 1985 | MR

[14] V. I. Smirnov, Kurs vysshei matematiki, T. III. Ch. 2, GITTL, M.–L., 1951 | MR