Spectral functions of zeros for $q$-Bessel functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 107 (1996) no. 3, pp. 397-414
Voir la notice de l'article provenant de la source Math-Net.Ru
Zeta functions
$\zeta_\nu(z;q)=\sum_{n=1}^{\infty}\bigl[j_{\nu n}(q)\bigr]^{-z}$
and partition functions $Z_\nu(t;q)=\sum_n\exp[-tj_{\nu n}^2 (q)]$ related to the zeros
$j_{\nu n}(q)$ of the $q$-Bessel functions $J_\nu(x;q)$ and $J_\nu^{(2)}(x;q)$ are studied. Explicit formulas for $\zeta_\nu(2n;q)$ at $n=\pm 1,\pm 2,\ldots$ are obtained. Poles of
$\zeta_\nu(z;q)$ in complex plane and corresponding residues are found. Asymptotics of the partition functions $Z_\nu(t;q)$ as $t \downarrow 0$ is derived.
@article{TMF_1996_107_3_a4,
author = {A. A. Kvitsinskiy},
title = {Spectral functions of zeros for $q${-Bessel} functions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {397--414},
publisher = {mathdoc},
volume = {107},
number = {3},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1996_107_3_a4/}
}
A. A. Kvitsinskiy. Spectral functions of zeros for $q$-Bessel functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 107 (1996) no. 3, pp. 397-414. http://geodesic.mathdoc.fr/item/TMF_1996_107_3_a4/