Differential Faddeev equations as a spectral problem for nonsymmetric operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 107 (1996) no. 3, pp. 513-528 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a nonsymmetric operator, for which the eigenvalue problem is the system of three-particle differential Faddeev equations. For this operator and its adjoint, the resolvents and represented in terms of the Faddeev $T$-matrix components of the three particle Schrödinger operator. Based on these representations, the invariant spaces of the operators under consideration are investigated and their eigenfunctions are determined. The biorthogonality and completeness are proved.
@article{TMF_1996_107_3_a11,
     author = {S. L. Yakovlev},
     title = {Differential {Faddeev} equations as a~spectral problem for nonsymmetric operator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {513--528},
     year = {1996},
     volume = {107},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_107_3_a11/}
}
TY  - JOUR
AU  - S. L. Yakovlev
TI  - Differential Faddeev equations as a spectral problem for nonsymmetric operator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 513
EP  - 528
VL  - 107
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_107_3_a11/
LA  - ru
ID  - TMF_1996_107_3_a11
ER  - 
%0 Journal Article
%A S. L. Yakovlev
%T Differential Faddeev equations as a spectral problem for nonsymmetric operator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 513-528
%V 107
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1996_107_3_a11/
%G ru
%F TMF_1996_107_3_a11
S. L. Yakovlev. Differential Faddeev equations as a spectral problem for nonsymmetric operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 107 (1996) no. 3, pp. 513-528. http://geodesic.mathdoc.fr/item/TMF_1996_107_3_a11/

[1] R. Nyuton, Teoriya rasseyaniya voln i chastits, Mir, M., 1969 | MR

[2] L. D. Faddeev, Trudy MIAN SSSR, 69, 1963, 1–125 | MR

[3] S. P. Merkurev, TMF, 32 (1977), 187 | MR

[4] S. P. Merkurev, YaF, 24 (1976), 289

[5] S. P. Merkurev, Zap. nauchn. semin. LOMI, 77, 1978, 148 | MR | Zbl

[6] S. P. Merkurev, Dokl. AN SSSR, 241 (1978), 68 | MR

[7] S. P. Merkurev, TMF, 38 (1979), 201 | MR

[8] S. P. Merkuriev, Lett. Math. Phys., 3 (1979), 141 | DOI | MR

[9] S. P. Merkuriev, Ann. of Phys., 130 (1980), 395 | DOI | MR | Zbl

[10] S. P. Merkurev, L. D. Faddeev, Kvantovaya teoriya rasseyaniya dlya sistem neskolkikh chastits, Nauka, M., 1985 | MR

[11] H. P. Noyes, H. Fiedeldey, Three Particle scattering in Quantum Mechanics, eds. J. Gillespie, J. Nuttal, Benjamin, 1968

[12] S. P. Merkuriev, C. Gignoux, A. Laverne, Ann. of Phys., 99 (1976), 20 | DOI | MR

[13] S. K. Adhikari, W. Glöckle, Phys. Rev., C19 (1979), 616

[14] J. F. Friar, B. F. Gibson, G. L. Paine, Phys. Rev., C22 (1980), 284 | MR

[15] V. V. Pupyshev, TMF, 81 (1989), 86 | MR

[16] J. W. Evans, D. K. Hoffman, J. Math. Phys., 22 (1981), 2858 | DOI | MR

[17] S. L. Yakovlev, TMF, 102 (1995), 323 | MR | Zbl

[18] V. I. Smirnov, Kurs vysshei matematiki, T. 5, OGIZ, M., 1947 | MR | Zbl

[19] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, T. 2, Mir, M., 1978 | MR

[20] W. Glöckle, Nucl.Phys., A141 (1970), 620 | DOI | MR