Equation of state in 3-D Ising model from microscopic level calculation
Teoretičeskaâ i matematičeskaâ fizika, Tome 107 (1996) no. 2, pp. 288-306 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new method for derivating of the equation of state in the 3-D Ising model on the simple cubic lattice with the exponentially decreasing potential is proposed. This equation describes the order parameter of the system as a function of the temperature, external field and the microscopic parameters of the system in the critical region. Numerical investigation of this function is performed for the case when the potential parameters correspond to the nearest neighbours interaction.
@article{TMF_1996_107_2_a9,
     author = {V. V. Dukhovyi and M. P. Kozlovskii and I. V. Pylyuk},
     title = {Equation of state in {3-D} {Ising} model from microscopic level calculation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {288--306},
     year = {1996},
     volume = {107},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_107_2_a9/}
}
TY  - JOUR
AU  - V. V. Dukhovyi
AU  - M. P. Kozlovskii
AU  - I. V. Pylyuk
TI  - Equation of state in 3-D Ising model from microscopic level calculation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 288
EP  - 306
VL  - 107
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_107_2_a9/
LA  - ru
ID  - TMF_1996_107_2_a9
ER  - 
%0 Journal Article
%A V. V. Dukhovyi
%A M. P. Kozlovskii
%A I. V. Pylyuk
%T Equation of state in 3-D Ising model from microscopic level calculation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 288-306
%V 107
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1996_107_2_a9/
%G ru
%F TMF_1996_107_2_a9
V. V. Dukhovyi; M. P. Kozlovskii; I. V. Pylyuk. Equation of state in 3-D Ising model from microscopic level calculation. Teoretičeskaâ i matematičeskaâ fizika, Tome 107 (1996) no. 2, pp. 288-306. http://geodesic.mathdoc.fr/item/TMF_1996_107_2_a9/

[1] Yukhnovskii I. R., TMF, 36:3 (1978), 373–399

[2] Yukhnovskii I. R., Fazovye perekhody vtorogo roda. Metod kollektivnykh peremennykh, Naukova dumka, Kiev, 1985 | MR

[3] Kozlovskii M. P., Pylyuk I. V., Yukhnovskii I. R., TMF, 87:2 (1991), 293–316 | MR | Zbl

[4] Kozlovskii M. P., Pylyuk I. V., Yukhnovskii I. R., TMF, 87:3 (1991), 434–455 | MR | Zbl

[5] Kozlovskii M. P., TMF, 78:3 (1989), 422–433 | MR

[6] Landau L. D., Lifshits E. M., Statisticheskaya fizika, Ch. I, Nauka, M., 1976 | MR

[7] Izyumov Yu. A., Syromyatnikov V. N., Fazovye perekhody i simmetriya kristallov, Nauka, M., 1984

[8] Le Guillou J. C., Zinn-Justin J., Phys. Rev. B, 21:9 (1980), 3976–3998 | DOI | MR | Zbl

[9] Kozlovskii M. P., Pylyuk I. V., Termodinamika trekhmernogo izingovskogo ferromagnetika v okrestnosti tochki fazovogo perekhoda v ramkakh modeli $\rho^6$. Sravnenie s modelyu $\rho^4$, Preprint ITF-90-81P, Institut teoreticheskoi fiziki, Kiev, 1990

[10] Kozlovskii M. P., Pylyuk I. V., Raschet termodinamicheskikh funktsii vblizi tochki fazovogo perekhoda v priblizhenii shesternoi bazisnoi mery, Preprint ITF-87-9P, Institut teoreticheskoi fiziki, Kiev, 1987