Two-magnon systems in the one-dimensional non-Heisenberg ferromagnet with the interaction up to three neighbours with a~spin value $s=1$
Teoretičeskaâ i matematičeskaâ fizika, Tome 107 (1996) no. 2, pp. 262-268
Voir la notice de l'article provenant de la source Math-Net.Ru
Two-magnon systems in the one-dimensional non-Heisenberg ferromagnet with the nearest, the second nearest and the third nearest neighbours interaction with a spin value $s=1$ are considered. It is proved that under $\Lambda=\pi$ and $J=J_1$ the system has a single
two-magnon bound state, and under $\Lambda=\pi$, $J=2J_1$ it has three such states respectively. Their energies are calculated. If $\Lambda=\pi$ and $J\neq J_1$, $J\neq 2J_1$,
the system is shown to have no more than five two-magnon bound states.
@article{TMF_1996_107_2_a7,
author = {S. M. Tashpulatov},
title = {Two-magnon systems in the one-dimensional {non-Heisenberg} ferromagnet with the interaction up to three neighbours with a~spin value $s=1$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {262--268},
publisher = {mathdoc},
volume = {107},
number = {2},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1996_107_2_a7/}
}
TY - JOUR AU - S. M. Tashpulatov TI - Two-magnon systems in the one-dimensional non-Heisenberg ferromagnet with the interaction up to three neighbours with a~spin value $s=1$ JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1996 SP - 262 EP - 268 VL - 107 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1996_107_2_a7/ LA - ru ID - TMF_1996_107_2_a7 ER -
%0 Journal Article %A S. M. Tashpulatov %T Two-magnon systems in the one-dimensional non-Heisenberg ferromagnet with the interaction up to three neighbours with a~spin value $s=1$ %J Teoretičeskaâ i matematičeskaâ fizika %D 1996 %P 262-268 %V 107 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1996_107_2_a7/ %G ru %F TMF_1996_107_2_a7
S. M. Tashpulatov. Two-magnon systems in the one-dimensional non-Heisenberg ferromagnet with the interaction up to three neighbours with a~spin value $s=1$. Teoretičeskaâ i matematičeskaâ fizika, Tome 107 (1996) no. 2, pp. 262-268. http://geodesic.mathdoc.fr/item/TMF_1996_107_2_a7/