Two-magnon systems in the one-dimensional non-Heisenberg ferromagnet with nearest neighbours and second nearest neighbours interaction with spin value $s=1$
Teoretičeskaâ i matematičeskaâ fizika, Tome 107 (1996) no. 2, pp. 251-261 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two-magnon systems in the one-dimensional non-Heisenberg ferromagnet with nearest neighbours and second nearest neighbours interactions with a spin value $s=1$ are considered. It is shown that under $\Lambda=\pi $ and $\Lambda=0$ the system has no more than two, and under $\Lambda=\pi /2$ no more than six two-magnon bound states respectively.
@article{TMF_1996_107_2_a6,
     author = {S. M. Tashpulatov},
     title = {Two-magnon systems in the one-dimensional {non-Heisenberg} ferromagnet with nearest neighbours and second nearest neighbours interaction with spin value $s=1$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {251--261},
     year = {1996},
     volume = {107},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_107_2_a6/}
}
TY  - JOUR
AU  - S. M. Tashpulatov
TI  - Two-magnon systems in the one-dimensional non-Heisenberg ferromagnet with nearest neighbours and second nearest neighbours interaction with spin value $s=1$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 251
EP  - 261
VL  - 107
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_107_2_a6/
LA  - ru
ID  - TMF_1996_107_2_a6
ER  - 
%0 Journal Article
%A S. M. Tashpulatov
%T Two-magnon systems in the one-dimensional non-Heisenberg ferromagnet with nearest neighbours and second nearest neighbours interaction with spin value $s=1$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 251-261
%V 107
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1996_107_2_a6/
%G ru
%F TMF_1996_107_2_a6
S. M. Tashpulatov. Two-magnon systems in the one-dimensional non-Heisenberg ferromagnet with nearest neighbours and second nearest neighbours interaction with spin value $s=1$. Teoretičeskaâ i matematičeskaâ fizika, Tome 107 (1996) no. 2, pp. 251-261. http://geodesic.mathdoc.fr/item/TMF_1996_107_2_a6/

[1] Gochev I. G., TMF, 15:1 (1973), 120–126

[2] Tashpulatov S. M., DAN RUz., 1994, no. 1, 7–10 | MR

[3] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. Tom I. Funktsionalnyi analiz, Mir, M., 1977 | MR

[4] Naimark M. A., Teoriya predstavlenii grupp, Nauka, M., 1976 | MR

[5] Fedoryuk M. V., Asimptotika, integraly i ryady, Nauka, M., 1987 | MR