Quasi classical analytical approximation to the $S$-matrix of collinear rearrangement reaction
Teoretičeskaâ i matematičeskaâ fizika, Tome 107 (1996) no. 2, pp. 238-250 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Collinear problem of three-particle rearrangement reaction in the framework of the quasi classical method of Fock–Leontovich parabolic equation is reduced to the quantum problem of the one-dimensional harmonic oscillator with variable frequency in an external force field. This allows one to express the $S$-matrix elements responsible for the rearrangement channel via analytical solution of the oscillator model by using the parameters of the linear configuration of the three particles.
@article{TMF_1996_107_2_a5,
     author = {A. V. Bogdanov and A. S. Gevorkyan and A. I. Denisenko},
     title = {Quasi classical analytical approximation to the $S$-matrix of collinear rearrangement reaction},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {238--250},
     year = {1996},
     volume = {107},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_107_2_a5/}
}
TY  - JOUR
AU  - A. V. Bogdanov
AU  - A. S. Gevorkyan
AU  - A. I. Denisenko
TI  - Quasi classical analytical approximation to the $S$-matrix of collinear rearrangement reaction
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 238
EP  - 250
VL  - 107
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_107_2_a5/
LA  - ru
ID  - TMF_1996_107_2_a5
ER  - 
%0 Journal Article
%A A. V. Bogdanov
%A A. S. Gevorkyan
%A A. I. Denisenko
%T Quasi classical analytical approximation to the $S$-matrix of collinear rearrangement reaction
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 238-250
%V 107
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1996_107_2_a5/
%G ru
%F TMF_1996_107_2_a5
A. V. Bogdanov; A. S. Gevorkyan; A. I. Denisenko. Quasi classical analytical approximation to the $S$-matrix of collinear rearrangement reaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 107 (1996) no. 2, pp. 238-250. http://geodesic.mathdoc.fr/item/TMF_1996_107_2_a5/

[1] Miller W. H., Dynamics of molecular collisions, Plenum Press, N.Y. – London, 1976

[2] Mizer V. O., Feierbakh S., Rottenberger M., Vychislitelnye metody v fizike atomnykh i molekulyarnykh stolknovenii, Mir, M., 1974

[3] Lomakin L. A., Osherov V. I., Polyakov O. N., Khim. fiz., 1982, no. 5, 594–598

[4] Teoreticheskie problemy khimicheskoi fiziki, Mir, M., 1969

[5] Gevorkyan A. S., DAN Arm. SSSR, 7:5 (1983), 219–224

[6] Bogdanov A. V., Gevorkyan A. S., Gorbachev Yu. E., Dubrovskii G. V., Vestnik LGU, 1983, no. 22, 80–82

[7] Bogdanov A. V., Gorbachev Yu. E., Gevorkyan A. S., Dubrovskii G. V., Kvaziklassicheskoe integralnoe predstavlenie $T$-operatora dlya protsessov s perestroikoi v ramkakh kollinearnoi modeli, Preprint No 998, FTI AN SSSR, L., 1986

[8] Denisenko A. I., Litvinenko S. A., Sokolov V. I., Analiz elementarnykh fizicheskikh protsessov, protekayuschikh pri formirovanii struktury dielektrik–poluprovodnik, Preprint No 1469, FTI AN SSSR, L., 1990

[9] Marcus R. A., J. Chem. Phys., 45 (1966), 4493–4498 | DOI

[10] Marcus R. A., J. Chem. Phys., 49 (1968), 2610–2617 | DOI

[11] Pancin C. C., Light J., J. Chem. Phys., 51 (1969), 1701–1704 | DOI

[12] Miller G., Light J., J. Chem. Phys., 54 (1971), 1635–1642 | DOI | MR

[13] Miller G., Light J., J. Chem. Phys., 54 (1971), 1643–1648 | DOI | MR

[14] Light J., Adv. Chem. Phys., 19 (1971), 1–22 | DOI

[15] Babich V. M., Buldyrev V. S., Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972 | MR

[16] Baz A. I., Zeldovich Ya. B., Perelomov A. M., Rasseyanie, reaktsii i raspady v nerelyativistskoi kvantovoi mekhanike, Nauka, M., 1976

[17] Landau L. D., Lifshits E. M., Kvantovaya mekhanika, Nauka, M., 1976

[18] Husimi K., Progr. Theor. Phys., 9 (1953), 381–394 | DOI | MR

[19] Popov V. S., Perelomov A. M., ZhETF, 56 (1969), 1355–1361

[20] Perelomov A. M., Popov V. S., TMF, 3 (1970), 377–381