Superfield form of $Sp(2)$-covariant quantization method for gauge theories
Teoretičeskaâ i matematičeskaâ fizika, Tome 107 (1996) no. 2, pp. 229-237 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Lagrangian quantization scheme for general gauge theories is proposed on a basis of the BRST–antiBRST symmetry principle in superspace $D=d+2$ ($d$ is a space-time dimension). The BRST–antiBRST transformations are realized in terms of superfields in the form of translations with respect to auxiliary (Grassmann) coordinates of the superspace.
@article{TMF_1996_107_2_a4,
     author = {P. M. Lavrov},
     title = {Superfield form of $Sp(2)$-covariant quantization method for gauge theories},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {229--237},
     year = {1996},
     volume = {107},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_107_2_a4/}
}
TY  - JOUR
AU  - P. M. Lavrov
TI  - Superfield form of $Sp(2)$-covariant quantization method for gauge theories
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 229
EP  - 237
VL  - 107
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_107_2_a4/
LA  - ru
ID  - TMF_1996_107_2_a4
ER  - 
%0 Journal Article
%A P. M. Lavrov
%T Superfield form of $Sp(2)$-covariant quantization method for gauge theories
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 229-237
%V 107
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1996_107_2_a4/
%G ru
%F TMF_1996_107_2_a4
P. M. Lavrov. Superfield form of $Sp(2)$-covariant quantization method for gauge theories. Teoretičeskaâ i matematičeskaâ fizika, Tome 107 (1996) no. 2, pp. 229-237. http://geodesic.mathdoc.fr/item/TMF_1996_107_2_a4/

[1] Batalin I. A., Lavrov P. M., Tyutin I. V., J. Math. Phys., 31:6 (1990), 1487–1493 | DOI | MR | Zbl

[2] Batalin I. A., Lavrov P. M., Tyutin I. V., J. Math. Phys., 32:2 (1991), 532–539 | DOI | MR | Zbl

[3] Batalin I. A., Lavrov P. M., Tyutin I. V., J. Math. Phys., 32:9 (1991), 2513–2521 | DOI | MR

[4] Batalin I. A., Lavrov P. M., Tyutin I. V., J. Math. Phys., 31:1 (1990), 6–13 | DOI | MR | Zbl

[5] Batalin I. A., Lavrov P. M., Tyutin I. V., J. Math. Phys., 31:11 (1990), 2708–2717 | DOI | MR | Zbl

[6] Batalin I. A., Lavrov P. M., Tyutin I. V., Int. J. Mod. Phys., 6:20 (1991), 3599–3612 | DOI | MR | Zbl

[7] Batalin I., Marnelius R., Phys. Lett., B350 (1995), 44–48 | DOI | MR

[8] Batalin I. A., Marnelius R., Semikhatov A. M., Nucl. Phys., B446 (1995), 249–271 | DOI | MR

[9] Bonora L., Tonin M., Phys. Lett., B98:1 (1981), 48–50 | DOI

[10] Bonora L., Pasti P., Tonin M., J. Math. Phys., 23:5 (1982), 839–845 | DOI | MR | Zbl

[11] Baulieu L., Phys. Rep., 129 (1985), 1–74 | DOI | MR

[12] Hull C. M., Spence B., Vazquez-Bello J. L., Nucl. Phys., B348 (1991), 108–124 | DOI | MR

[13] Devitt B., Dinamicheskaya teoriya grupp i polei, Mir, M., 1987 | MR