Quantum string theory in indefinite space of states
Teoretičeskaâ i matematičeskaâ fizika, Tome 107 (1996) no. 2, pp. 213-228 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The quantum string theory in indefinite (pseudo-Hilbert) Fock representation is considered. It is shown that all anomalies in 4-dimensional theory of open bosonic string are cancelled at particular choice of vacuum state. In this the algebra of reparametrizations (in covariant approach) and the algebra of rotations (in light cone gauge) become closed. The indefiniteness of the state space introduces some non-physical features into the theory. Modifications of the given method are discussed, which are necessary to construct more realistic theory.
@article{TMF_1996_107_2_a3,
     author = {I. N. Nikitin},
     title = {Quantum string theory in indefinite space of states},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {213--228},
     year = {1996},
     volume = {107},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_107_2_a3/}
}
TY  - JOUR
AU  - I. N. Nikitin
TI  - Quantum string theory in indefinite space of states
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 213
EP  - 228
VL  - 107
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_107_2_a3/
LA  - ru
ID  - TMF_1996_107_2_a3
ER  - 
%0 Journal Article
%A I. N. Nikitin
%T Quantum string theory in indefinite space of states
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 213-228
%V 107
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1996_107_2_a3/
%G ru
%F TMF_1996_107_2_a3
I. N. Nikitin. Quantum string theory in indefinite space of states. Teoretičeskaâ i matematičeskaâ fizika, Tome 107 (1996) no. 2, pp. 213-228. http://geodesic.mathdoc.fr/item/TMF_1996_107_2_a3/

[1] Dirac P. A. M., Comm. Dublin Inst. Adv. Studies, 1943, 1 | Zbl

[2] Pauli W., Rev. Mod. Phys., 15 (1943), 175 | DOI | MR | Zbl

[3] Nad K., Prostranstva sostoyanii s indefinitnoi metrikoi v kvantovoi teorii polya, Mir, M., 1969 | Zbl

[4] Brink L., Enno M., Printsipy teorii strun, Mir, M., 1991, S. 156

[5] Nikitin I. N., YaF, 56:9 (1993), 230

[6] Nikitin I. N., Kvantovaya teoriya struny v indefinitnom prostranstve sostoyanii, Preprint IFVE 95-113, IFVE, Protvino, 1995

[7] Pron'ko G. P., Rev. Math. Phys., 2:3 (1990), 355 | DOI | MR | Zbl

[8] Nikitin I. N., Pronko G. P., Elektromagnitnoe vzaimodeistvie v teorii pryamolineinoi struny, Preprint IFVE 94-64, IFVE, Protvino, 1994