Poisson reduction of the lattice Kac–Moody algebra
Teoretičeskaâ i matematičeskaâ fizika, Tome 107 (1996) no. 2, pp. 179-187 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The poisson reduction of the $SL(N)$ lattice Kac–Moody algebra under the action of the maximal nilpotent subgroup of $SL(N)$ is considered. Poisson brackets on the reduced phase space are constructed. For $N=2$ in the continuous limit they comprise with the Gelfand–Fuchs cocycle.
@article{TMF_1996_107_2_a0,
     author = {G. E. Arutyunov and P. B. Medvedev},
     title = {Poisson reduction of the lattice {Kac{\textendash}Moody} algebra},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {179--187},
     year = {1996},
     volume = {107},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_107_2_a0/}
}
TY  - JOUR
AU  - G. E. Arutyunov
AU  - P. B. Medvedev
TI  - Poisson reduction of the lattice Kac–Moody algebra
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 179
EP  - 187
VL  - 107
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_107_2_a0/
LA  - ru
ID  - TMF_1996_107_2_a0
ER  - 
%0 Journal Article
%A G. E. Arutyunov
%A P. B. Medvedev
%T Poisson reduction of the lattice Kac–Moody algebra
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 179-187
%V 107
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1996_107_2_a0/
%G ru
%F TMF_1996_107_2_a0
G. E. Arutyunov; P. B. Medvedev. Poisson reduction of the lattice Kac–Moody algebra. Teoretičeskaâ i matematičeskaâ fizika, Tome 107 (1996) no. 2, pp. 179-187. http://geodesic.mathdoc.fr/item/TMF_1996_107_2_a0/

[1] Reshetikhin N. Yu., Semenov-Tian-Shansky M. A., Lett. Math. Phys., 19 (1990), 133 | DOI | MR | Zbl

[2] Alekseev A. Yu., Faddeev L. D., Semenov-Tian-Shansky M. A., Volkov A. Yu., The unravelling of the quantum group structure in the WZNW theory, CERN Preprint TH-5981/91, 1991 | MR

[3] Alekseev A. Yu., Faddeev L. D., Semenov-Tian-Shansky M. A., Comm. Math. Phys., 149 (1992), 335 | DOI | MR | Zbl

[4] Falceto F., Gawedzki K. J., Geom. Phys., 11 (1993), 251 | DOI | MR | Zbl

[5] Goddard P., Kent A., Olive D., Comm. Math. Phys., 103 (1986), 105–119 | DOI | MR | Zbl

[6] Drinfeld V. G., Sokolov V. V., DAN SSSR, 284:1 (1985), 11–16 | MR

[7] Antonov A. V., Belov A. A., Chaltikian K. D., Lattice conformal theories and their integrable perturbations, Preprint LANDAU-TMP-95-02, 1995 ; E-print hep-th/9505155 | MR

[8] Feigin B., Frenkel E., Phys. Lett., B276 (1992), 79 | DOI | MR

[9] Semenov-Tian-Shansky M. A., Publ. RIMS Kyoto Univ., 21:6 (1985), 1237 | DOI | MR

[10] Semenov-Tyan-Shanskii M. A., TMF, 93:2 (1992), 302–329 | MR

[11] Drinfel'd V. G., Proc. Int. Congr. Math., Vol. 1 (Berkley, 1986), 798 | Zbl

[12] Reshetikhin N. Yu., Semenov-Tian-Shansky M. A., Geometry and Physics, 5:4 (1988), 533 | DOI | MR | Zbl