The Iorio–O'Carroll theorem for $N$-particle lattice Hamiltonian
Teoretičeskaâ i matematičeskaâ fizika, Tome 107 (1996) no. 1, pp. 75-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The unitary equivalence of the full and free Hamiltonians for a $N$-particle quantum lattice system with the small coupling constant is proved. This result is obtained by means of the mathematical scattering theory: we prove the existence and asymptotic completeness of the wave operators. Here we construct a special representation for the exponent of the Hamiltonian.
@article{TMF_1996_107_1_a6,
     author = {Yu. V. Zhukov},
     title = {The {Iorio{\textendash}O'Carroll} theorem for $N$-particle lattice {Hamiltonian}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {75--85},
     year = {1996},
     volume = {107},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_107_1_a6/}
}
TY  - JOUR
AU  - Yu. V. Zhukov
TI  - The Iorio–O'Carroll theorem for $N$-particle lattice Hamiltonian
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 75
EP  - 85
VL  - 107
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_107_1_a6/
LA  - ru
ID  - TMF_1996_107_1_a6
ER  - 
%0 Journal Article
%A Yu. V. Zhukov
%T The Iorio–O'Carroll theorem for $N$-particle lattice Hamiltonian
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 75-85
%V 107
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1996_107_1_a6/
%G ru
%F TMF_1996_107_1_a6
Yu. V. Zhukov. The Iorio–O'Carroll theorem for $N$-particle lattice Hamiltonian. Teoretičeskaâ i matematičeskaâ fizika, Tome 107 (1996) no. 1, pp. 75-85. http://geodesic.mathdoc.fr/item/TMF_1996_107_1_a6/

[1] Malyshev V. A., Minlos R. A., Lineinye operatory v beskonechnochastichnykh sistemakh, Nauka, M., 1994

[2] Mogilner A. I., “Hamiltonians in solid state physics as multiparticle discrete Schrödinder operators: problems and results”, Adv. Soviet. Math., 5 (1991), 139–194 | MR | Zbl

[3] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR

[4] Melnikov A. M., Mogilner A. I., J. Phys. A: Math. Gen., 24 (1991), 3671–3676 | DOI | MR

[5] Zhukov Yu. V., “Teorema Iorio–O'Kerrola dlya obschikh reshetchatykh gamiltonianov”, Trudy sem. im. I. G. Petrovskogo, 20

[6] Faddeev L. D., Matematicheskie voprosy teorii rasseyaniya dlya sistemy trekh chastits, Tr. MIAN, 69, 1963 | MR | Zbl

[7] Minlos R. A., Spohn H., “Twice-body problem in radiative decay”, Adv. Soviet. Math. (to appear)

[8] Minlos R. A., Mogilner A. I., Math. Problems of Statistical Mechanics and Dynamics, ed. R. L. Dobrushin, Dordrecht, 1986, 139–160 | DOI | MR | Zbl

[9] Naimark M. A., Fomin S. V., UMN, 10:2 (1955), 111–142 | MR | Zbl

[10] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii. Monodromiya i asimptotika integralov, Nauka, M., 1984 | MR

[11] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii. Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982 | MR

[12] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. T. 3. Teoriya rasseyaniya, Mir, M., 1982 | MR

[13] Fedoryuk M. V., Asimptotika: integraly i ryady, Nauka, M., 1987 | MR