Ballistic transport in nanostructures: explicitly solvable models
Teoretičeskaâ i matematičeskaâ fizika, Tome 107 (1996) no. 1, pp. 12-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A relatively wide class of explicitly solvable models of the ballistic transport in nanostructures is constructed by means of operator extension theory. In the obtained models the transmission coefficient $T(E)$ has a simple dependence on the modeled device parameters as well as on the parameters of an external magnetic field. Some exemples of quantum point models are given, in which $T(E)$, and hence the conductance, exhibits an oscillatory behaviour.
@article{TMF_1996_107_1_a1,
     author = {V. A. Geiler and I. Yu. Popov},
     title = {Ballistic transport in nanostructures: explicitly solvable models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {12--20},
     year = {1996},
     volume = {107},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_107_1_a1/}
}
TY  - JOUR
AU  - V. A. Geiler
AU  - I. Yu. Popov
TI  - Ballistic transport in nanostructures: explicitly solvable models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 12
EP  - 20
VL  - 107
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_107_1_a1/
LA  - ru
ID  - TMF_1996_107_1_a1
ER  - 
%0 Journal Article
%A V. A. Geiler
%A I. Yu. Popov
%T Ballistic transport in nanostructures: explicitly solvable models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 12-20
%V 107
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1996_107_1_a1/
%G ru
%F TMF_1996_107_1_a1
V. A. Geiler; I. Yu. Popov. Ballistic transport in nanostructures: explicitly solvable models. Teoretičeskaâ i matematičeskaâ fizika, Tome 107 (1996) no. 1, pp. 12-20. http://geodesic.mathdoc.fr/item/TMF_1996_107_1_a1/

[1] Beenakker C. W. J., van Houten H., Solid State Phys., 44, eds. H. Ehrenreich, D. Turnbull, Academic Press, New York, 1991, 1 | DOI

[2] Landauer R., IBM J. Res. Dev., 1 (1957), 223 | DOI | MR

[3] Landauer R., Phil. Mag., 21 (1970), 863 | DOI

[4] Büttiker M., Phys. Rev. Lett., 57 (1986), 1761 | DOI

[5] Büttiker M., Electronic properties of multilayers and low-dimensional semiconductor structures, eds. Chamberlain J. et al., Plenum Press, New York, 1990, 51 | DOI

[6] Büttiker M., J. Phys. Condens. Matter., 5 (1993), 9369

[7] McEuen P. L., Alphenaar B. W., Wheeler R. G. et al., Surf. Sci., 229 (1990), 312 | DOI

[8] Eugster C. C. et al., Phys. Rev. B, 46 (1992), 10146 | DOI

[9] Levinson Ya. B., Lubin M. I., Sukhorukov E. V., Pisma v ZhETF, 54 (1991), 405

[10] Levinson Y. B., Lubin M. I., Sukhorukov E. V., Phys. Rev. B, 45 (1992), 11936 | DOI

[11] Geyler V. A., Proc. 2nd Int. Conf. Nanometer Scale Sci. and Technol., Part 3, Moscow, 1994, 834

[12] Geiler V. A., Margulis V. A., Chuchaev I. I., Pisma v ZhETF, 58 (1993), 668

[13] Pavlov B., TMF, 59:3 (1984), 345 | MR

[14] Pavlov B., UMN, 42:6 (1987)

[15] Popov I. Yu., FTT, 36 (1994), 1918

[16] Popov I. Yu., Popova S. L., ZhTF, 64:125 1 (1994), 23

[17] Geyler V. A., Popov I. Yu., Phys. Lett. A, 187 (1994), 410 | DOI

[18] Albeverio S., Gestezi F., Kholden Kh., Kh\char27eg-Kron R., Reshaemye modeli v kvantovoi mekhanike, Mir, M., 1991 | MR

[19] Krein M. G., Langer G. K., Funkts. analiz i ego prilozh., 5:125 2 (1971), 59 | MR | Zbl

[20] Kvantovyi effekt Kholla, Sb. statei. Sost. A. Ya. Shik i Yu. V. Shmartsev, Mir, M., 1986

[21] R. Prendzh i S. Girvin (red.), Kvantovyi effekt Kholla, Mir, M., 1989

[22] Chakraborty T., Comments Cond. Matter Phys., B16 (1992), 35

[23] Geiler V. A., Algebra i analiz, 3:3 (1991), 1 | MR

[24] Geiler V. A., Margulis V. A., TMF, 58:3 (1984), 461–472 | MR

[25] Kiselev A. A., Pavlov B., TMF, 100:3 (1994) | MR | Zbl