Ballistic transport in nanostructures: explicitly solvable models
Teoretičeskaâ i matematičeskaâ fizika, Tome 107 (1996) no. 1, pp. 12-20
Voir la notice de l'article provenant de la source Math-Net.Ru
A relatively wide class of explicitly solvable models of the ballistic transport in nanostructures is constructed by means of operator extension theory. In the obtained models the transmission coefficient $T(E)$ has a simple dependence on the modeled device parameters as well as on the parameters of an external magnetic field. Some exemples of quantum point models are given, in which $T(E)$, and hence the conductance, exhibits an oscillatory behaviour.
@article{TMF_1996_107_1_a1,
author = {V. A. Geiler and I. Yu. Popov},
title = {Ballistic transport in nanostructures: explicitly solvable models},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {12--20},
publisher = {mathdoc},
volume = {107},
number = {1},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1996_107_1_a1/}
}
TY - JOUR AU - V. A. Geiler AU - I. Yu. Popov TI - Ballistic transport in nanostructures: explicitly solvable models JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1996 SP - 12 EP - 20 VL - 107 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1996_107_1_a1/ LA - ru ID - TMF_1996_107_1_a1 ER -
V. A. Geiler; I. Yu. Popov. Ballistic transport in nanostructures: explicitly solvable models. Teoretičeskaâ i matematičeskaâ fizika, Tome 107 (1996) no. 1, pp. 12-20. http://geodesic.mathdoc.fr/item/TMF_1996_107_1_a1/