The problem of localization in one-dimensional disordered systems (A new approach)
Teoretičeskaâ i matematičeskaâ fizika, Tome 106 (1996) no. 3, pp. 425-437 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The theorem proved in 1951 by Molchanov [15] is utilized to investigate the problem of localization of one-electron states in one-dimensional disordered systems. The theorem permits to treat the problem in a general way and establishes a new criterion of localization, which is based on the asymptotic features of a random potential. It is shown that in the case of diagonal disorder the theorem does not lead to new results; namely, all the states are found to be localized. However, in the case of structural disorder it follows from the theorem that all the states can be delocalized under relatively weak restrictions.
@article{TMF_1996_106_3_a6,
     author = {L. P. Ginzburg},
     title = {The problem of localization in one-dimensional disordered systems {(A~new} approach)},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {425--437},
     year = {1996},
     volume = {106},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_106_3_a6/}
}
TY  - JOUR
AU  - L. P. Ginzburg
TI  - The problem of localization in one-dimensional disordered systems (A new approach)
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 425
EP  - 437
VL  - 106
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_106_3_a6/
LA  - ru
ID  - TMF_1996_106_3_a6
ER  - 
%0 Journal Article
%A L. P. Ginzburg
%T The problem of localization in one-dimensional disordered systems (A new approach)
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 425-437
%V 106
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1996_106_3_a6/
%G ru
%F TMF_1996_106_3_a6
L. P. Ginzburg. The problem of localization in one-dimensional disordered systems (A new approach). Teoretičeskaâ i matematičeskaâ fizika, Tome 106 (1996) no. 3, pp. 425-437. http://geodesic.mathdoc.fr/item/TMF_1996_106_3_a6/

[1] Mott N. F., Twose W. D., Adv. Phys., 10:38 (1961), 107–163 | DOI

[2] Borland R. E., Proc. Roy. Soc. (London), A529 (1963), 274–545 | Zbl

[3] Ishii K., Progr. Theor. Phys. (Suppl.), 53 (1973), 77–138 | DOI

[4] Delyon F., Kunz H., Souillard B., J. Phys. A, 16:1 (1983), 25–42 | DOI | MR | Zbl

[5] Berezinskii V. L., ZhETF, 65:3 (1973), 1251–1266

[6] Halperin B. I., Adv. Chem. Phys., 8 (1967), 123–177 | DOI

[7] Theodorou G., Cohen M. H., Phys. Rev. B, 13:10 (1976), 4597–4606 | DOI

[8] Azbel M. Ya., Sol. State Commun., 37:10 (1981), 789–790 | DOI

[9] Denbigh J. S., Rivier N., J. Phys. C, 12:3 (1979), L107–L110 | DOI | MR

[10] Brezini A., Phys. Stat. Sol. (b), 128:1 (1985), K81–K84 | DOI

[11] Bloch A. N., Weisman R. B., Varma C. M., Phys. Rev. Lett., 28:12 (1972), 753–756 | DOI

[12] Bonch-Bruevich V. L., Zvyagin I. P., Kaiper R., Mironov A. G., Enderlain R., Esser B., Elektronnaya teoriya neuporyadochennykh poluprovodnikov, Nauka, M., 1981

[13] Lifshits I. M., Gredeskul S. A., Pastur L. A., Vvedenie v teoriyu neuporyadochennykh sistem, Nauka, M., 1982 | MR

[14] Ginzburg L. P., FTT, 34:1 (1992), 164–167

[15] Molchanov A. M., Trudy Moskovskogo matematicheskogo obschestva, 2, 1953, 169–198 | MR

[16] Roberts G. O., Ann. of Prob., 19:4 (1991), 1689–1731 | DOI | MR | Zbl

[17] Brezini A., Sebbani M., Behill F., Phys. Stat. Sol. (b), 138 (1986), K137–K142 | DOI

[18] Bychkov Yu. A., Pisma v ZhETF, 17:5 (1973), 266–267

[19] Kostadinov I. Z., Pisma v ZhETF, 21:2 (1975), 105–107

[20] Kaveh M., Mott N. F., J. Phys. C, 16:29 (1983), L1067–L1072 | DOI

[21] Ter-Khaar D., Vvedenie v fiziku sistem mnogikh chastits, IL, M., 1961

[22] Dewel G., Physica, 44:1 (1969), 120–142 | DOI