The ideal structure of superconformal semigroups
Teoretičeskaâ i matematičeskaâ fizika, Tome 106 (1996) no. 3, pp. 355-374 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The role of noninvertible transformations in superstring theories is discussed. A new parametrization of superconformal groups is found, which enable us to construct their ideal extensions, superconformal semigroups. The latter consist of a group containing the standard superconformal transformations and of an ideal. The general abstract structure of superconformal groups is analysed in detail. A classification in terms of indices of nilpotency is presented. The ideal series is constructed, and new generalized “vector” and “tensor” Green's relations and several quasicharacters are defined. The necessity of similar constructions in other supersymmetric and superquantum models is stressed.
@article{TMF_1996_106_3_a0,
     author = {S. A. Duplij},
     title = {The ideal structure of superconformal semigroups},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {355--374},
     year = {1996},
     volume = {106},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_106_3_a0/}
}
TY  - JOUR
AU  - S. A. Duplij
TI  - The ideal structure of superconformal semigroups
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 355
EP  - 374
VL  - 106
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_106_3_a0/
LA  - ru
ID  - TMF_1996_106_3_a0
ER  - 
%0 Journal Article
%A S. A. Duplij
%T The ideal structure of superconformal semigroups
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 355-374
%V 106
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1996_106_3_a0/
%G ru
%F TMF_1996_106_3_a0
S. A. Duplij. The ideal structure of superconformal semigroups. Teoretičeskaâ i matematičeskaâ fizika, Tome 106 (1996) no. 3, pp. 355-374. http://geodesic.mathdoc.fr/item/TMF_1996_106_3_a0/

[1] Volkov D. V., Akulov V. P., JETP Lett., 16 (1972), 621–624

[2] Green M. B., Schwarz J. H., Witten E., Superstring Theory, V. 1, 2, Cambridge Univ. Press, Cambridge, 1987 | MR

[3] Gates S. J., Grisaru M. T., Rocek M., et al., Superspace, Benjamin, Reading, 1983 | MR | Zbl

[4] Berezin F. A., Introduction to Superanalysis, Reidel, Dordrecht, 1987 | MR | Zbl

[5] Clifford A. H., Preston G. B., The Algebraic Theory of Semigroups, V. 1, Amer. Math. Soc., Providence, 1961 | MR | Zbl

[6] Ljapin E. S., Semigroups, Amer. Math. Soc., Providence, 1968 | MR

[7] Kawakubo K., The Theory of Transformation Groups, Clarendon Press, New York, 1991 | MR

[8] Howie J. M., Math. Chronicle, 16 (1987), 1–14 | MR | Zbl

[9] Duplij S., J. Math. Phys., 32:11 (1991), 2959–2965 ; Sov. J. Nucl. Phys., 52:10 (1990), 742–745 | DOI | MR | MR

[10] Duplij S., Theor. Math. Phys., 86:2 (1991), 138–143 ; J. Phys., A24:13 (1991), 3167–3179 ; Acta Phys. Pol., B21:10 (1990), 783–811 | DOI | MR | Zbl

[11] Petrich M., “Cayley theorems for semigroups”, Semigroups and Their Applications, eds. Coberstein S. M., Higgins P. M., D. Reidel, Dordrecht, 1987, 133–138 | DOI | MR

[12] Magill K. D., Semigroup Forum, 11:1 (1975), 1–189 | DOI | MR

[13] Aizenstat A. J., Izv. Vuzov. Math., 1965, no. 1, 3–11 | MR

[14] Hofmann K. H., Mostert P. S., Elements of Compact Semigroups, Merill, Columbus, 1966 | MR | Zbl

[15] Leites D. A., Russian Math. Surv., 35:1 (1980), 1–64 | DOI | MR | Zbl

[16] Rogers A., J. Math. Phys., 21:5 (1980), 1352–1365 | DOI | MR | Zbl

[17] Khrennikov A. Y., Russian Math. Surv., 43:2 (1988), 87–114 ; Theor. Math. Phys., 72:3 (1987), 24–34 | DOI | MR | Zbl

[18] Schwarz A. S., Theor. Math. Phys., 60:1 (1984), 37–42

[19] Boyer C. P., Gitler S., Trans. Amer. Math. Soc., 285:1 (1984), 241–267 | DOI | MR | Zbl

[20] Catenacci R., Reina C., Teofilatto P., J. Math. Phys., 26:4 (1985), 671–674 | DOI | MR | Zbl

[21] Shtern A. I., Func. Anal., Appl., 25:2 (1991), 140–143 | DOI | MR | Zbl

[22] Berezin F. A., Kac G. I., Math. Sbornic, 11 (1970), 311–326 | DOI | MR

[23] Schwarz A. S., Superanalogs of symplectic and contact geometry and their applications to quantum field theory, UC Davis preprint-94-06-01, 1994 ; E-print HEP-TH-9406120 | MR

[24] Witt B. S. D., Supermanifolds, Cambrige Univ. Press, Cambrige, 1984 | MR | Zbl

[25] Dubrovin B. A., Fomenko A. T., Novikov S. P., Modern Geometry. Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields, Springer-Verlag, Berlin, 1984 ; Part 2. The Geometry and Topology of Manifolds, Springer-Verlag, Berlin, 1985 | MR | Zbl | Zbl

[26] Shander V. N., Func. Anal. Appl., 22:1 (1988), 91–92 | DOI | MR

[27] Baranov M. A., Frolov I. V., Schwarz A. S., Theor. Math. Phys., 79:2 (1989), 241–252 | DOI | MR

[28] Gilmer R., Multiplicative Ideal Theory, Dekker, New York, 1972 ; Larsen M. D., McCarthy P. J., Multiplicative Theory of Ideals, Academic Press, New York, 1971 ; Császár A., Thümmel E, Acta Math. Hung., 56:3–4 (1990), 189–204 | MR | Zbl | MR | Zbl | DOI | MR

[29] Baranov A. M., Schwarz A. S., Int. J. Mod. Phys., A2 (1987), 1773–1781 | DOI | MR

[30] Crane L., Rabin J. M., Commun. Math. Phys., 113:4 (1988), 601–623 | DOI | MR

[31] Giddings S. B., Nelson P., Commun. Math. Phys., 116:4 (1988), 607–634 ; Phys. Rev. Lett., 59:23 (1987), 2619–2622 | DOI | MR | Zbl | DOI | MR

[32] Friedan D., “Notes on string theory and two dimensional conformal field theory”, Unified String Theories, eds. Green M., Gross D., World Sci., Singapore, 1986, 118–149 | MR | Zbl

[33] Baranov M. A., Frolov I. V., Schwarz A. S., Theor. Math. Phys., 70:1 (1987), 92–103 ; Rosly A. A., Schwarz A. S., Voronov A. A., Commun. Math. Phys., 119:1 (1988), 129–152 | DOI | MR | Zbl | DOI | MR | Zbl

[34] Distler J., Nelson P., Phys. Rev. Lett., 66:15 (1991), 1955–1959 ; Covindarajan S., Nelson P., Rey S.-J., Nucl. Phys., B365:3 (1991), 633–652 ; Covindarajan S., Nelson P., Wong E., Commun. Math. Phys., 147:2 (1992), 253–275 | DOI | MR | DOI | DOI | MR

[35] Giddings S. B., Nelson P., Commun. Math. Phys., 118 (1988), 289–302 ; Hodgkin L., J. Geom. Phys., 6:3 (1989), 333–338 ; Rogers A., Super Riemann surfaces. The Interface of Mathematics and Particle Physics, eds. Quillen D. G., Segal G. B., Tson S. T., Clarendon Press, New York, 1990, 87–96 | DOI | MR | Zbl | DOI | MR | MR

[36] Rogers A., Langer M., Class. Q. Grav., 11 (1994), 2619–2626 | DOI | MR | Zbl

[37] Grillet P. A., Semigroup Forum, 43 (1991), 187–201 ; Sullivan R. P., J. Algebra, 110:2 (1987), 324–343 | DOI | MR | Zbl | DOI | MR | Zbl

[38] Grillet P. A., Semigroup Forum, 50:1 (1995), 25–36 ; Sullivan R. P., J. Austr. Math. Soc., A43:1 (1987), 127–136 | DOI | MR | Zbl | DOI | MR | Zbl

[39] Grillet P. A., Petrich M., Pacific J. Math., 26 (1968), 493–508 ; Bogdanović S., Ćirić M., Proc. Japan Acad., A68:6 (1992), 115–117 ; 126–130 ; Wang L. M., Semigroup Forum, 47 (1993), 353–358 | DOI | MR | Zbl | DOI | Zbl | DOI | MR | Zbl

[40] Steinfeld O., Thang T. T., Beitrage Alg. Geom., 26 (1988), 127–135 ; Clifford A. H., Semigroup Forum, 16:2 (1978), 183–196 ; Steinfeld O., Quasi-ideals in Rings and Semigroups, Akadémiai Kiado, Budapest, 1978 | MR | DOI | MR | Zbl | MR | Zbl

[41] Miccoli M. M., Note Mat., 7:1 (1987), 83–89 ; Catino F., Rev. Mat. Pure Appl., 4 (1989), 89–92 ; Lajos S., Acta Sci. Math. Szeged, 22:1 (1961), 217–222 | MR | Zbl | MR | Zbl | MR | Zbl

[42] Hmelnitsky I. L., Semigroup Forum, 32 (1985), 135–144 ; Shevrin L. N., Prosvirov A. S., Trans. Moscow Math. Soc., 29 (1973), 235–246 ; Long D. Y., Chinese Ann. Math., A13:3 (1992), 360–363 | DOI | MR | Zbl | Zbl | Zbl

[43] Huckaba J. A., Commutative Rings with Zero Divisors, Dekker, New York, 1988 ; Visweswaran S., Bull. Austr. Math. Soc., 43:2 (1991), 233–240 | MR | Zbl | DOI | MR

[44] Gomes G. M. S., Howie J. M., Proc. Edinburgh Math. Soc., 30:3 (1987), 383–395 ; Garba G. U., Semigroup Forum, 48:1 (1994), 37–49 ; Yamada M., Proc. Japan Acad., 40 (1964), 94–98 | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl

[45] Levi I., Williams W., Semigroup Forum, 43 (1991), 344–356 ; Levi I., Glasgow Math. J., 29 (1987), 149–157 ; Levi I., Seif S., Semigroup Forum, 43 (1991), 93–113 ; Levi I., Green's relations on $G$-normal semigroups, Louisville preprint, 1992 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | MR

[46] Schein B. M., “Cosets in groups and semigroups”, Semigroups With Applications, eds. Howie J. M., Munn W., Weinert H. J., World Sci., River Edge, 1992, 205–221 | MR | Zbl

[47] Meakin J., J. London Math. Soc., 21 (1980), 244–256 | DOI | MR | Zbl

[48] Anderson L., Hunter R., Koch R., Trans. Amer. Math. Soc., 117 (1965), 521–529 | DOI | MR | Zbl

[49] Manin Y., Commun. Math. Phys., 123 (1989), 123–135 ; Topics Noncommutative Differential Geometry, Princeton University Press, Princeton, 1991 ; Khoroshkin S. M., Tolstoy V. N., Commun. Math. Phys., 141:3 (1991), 599 | DOI | MR | Zbl | DOI | MR | Zbl