The perturbation of the surface density of electronic states by point defect~-- the connection with the topology of the isoenergetic curve
Teoretičeskaâ i matematičeskaâ fizika, Tome 106 (1996) no. 2, pp. 306-314

Voir la notice de l'article provenant de la source Math-Net.Ru

The discrete Schrodinger equation on two-dimensional Bravais lattice perturbed by a point potential is considered. The asymptotic behavior of the perturbation of the surface density of states is analyzed. It is established that the behavior of this perturbation depends mainly on the topological properties of the isoenergetic curve on the Brillouin zone.
@article{TMF_1996_106_2_a10,
     author = {S. V. Frolov},
     title = {The perturbation of the surface density of electronic states by point defect~-- the connection with the topology of the isoenergetic curve},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {306--314},
     publisher = {mathdoc},
     volume = {106},
     number = {2},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_106_2_a10/}
}
TY  - JOUR
AU  - S. V. Frolov
TI  - The perturbation of the surface density of electronic states by point defect~-- the connection with the topology of the isoenergetic curve
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 306
EP  - 314
VL  - 106
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_106_2_a10/
LA  - ru
ID  - TMF_1996_106_2_a10
ER  - 
%0 Journal Article
%A S. V. Frolov
%T The perturbation of the surface density of electronic states by point defect~-- the connection with the topology of the isoenergetic curve
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 306-314
%V 106
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1996_106_2_a10/
%G ru
%F TMF_1996_106_2_a10
S. V. Frolov. The perturbation of the surface density of electronic states by point defect~-- the connection with the topology of the isoenergetic curve. Teoretičeskaâ i matematičeskaâ fizika, Tome 106 (1996) no. 2, pp. 306-314. http://geodesic.mathdoc.fr/item/TMF_1996_106_2_a10/