General-covariant quantum mechanics in Riemannian space-time III.~Dirac's particle
Teoretičeskaâ i matematičeskaâ fizika, Tome 106 (1996) no. 1, pp. 122-132
Voir la notice de l'article provenant de la source Math-Net.Ru
A general covariant analog of the standard non-relativistic Quantum Mechanics with relativistic corrections in normal geodesic frames in the general Riemannian space-time is constructed for the Dirac particle. Not only the Pauli equation with hermitean hamiltonian and the pre-Hilbert structure of space of its solutions but also the matrix elements of hermitean operators of momentum, (curvilinear) spatial coordinates and spin of the particle are deduced as general-covariant asymptotic approximation in $c^{-2}$, $c$ being the velocity of light, to their naturally determined general-relativistic pre-images. It is shown that the hamiltonian in the Pauli equation originated by the Dirac equation is unitary equivalent to the operator of energy,
originated by the metric energy-momentum tensor of the spinor field. Commutation and other properties of the observables connected with the considered change of geometrical background
of Quantum Mechanics are briefly discussed.
@article{TMF_1996_106_1_a9,
author = {\'E. A. Tagirov},
title = {General-covariant quantum mechanics in {Riemannian} space-time {III.~Dirac's} particle},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {122--132},
publisher = {mathdoc},
volume = {106},
number = {1},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1996_106_1_a9/}
}
TY - JOUR AU - É. A. Tagirov TI - General-covariant quantum mechanics in Riemannian space-time III.~Dirac's particle JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1996 SP - 122 EP - 132 VL - 106 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1996_106_1_a9/ LA - ru ID - TMF_1996_106_1_a9 ER -
É. A. Tagirov. General-covariant quantum mechanics in Riemannian space-time III.~Dirac's particle. Teoretičeskaâ i matematičeskaâ fizika, Tome 106 (1996) no. 1, pp. 122-132. http://geodesic.mathdoc.fr/item/TMF_1996_106_1_a9/