Renormalization group in the theory of fully developed turbulence. Composite operators of canonical dimension eight
Teoretičeskaâ i matematičeskaâ fizika, Tome 106 (1996) no. 1, pp. 92-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Within the framework of renormalization group approach to the stohastic theory of fully developed turbulence we consider renormalization and critical dimensions of the family of Galilean invariant scalar composite operators of canonical dimension eight.
@article{TMF_1996_106_1_a7,
     author = {N. V. Antonov and S. V. Borisenok and V. I. Girina},
     title = {Renormalization group in the theory of~fully developed turbulence. {Composite} operators of canonical dimension eight},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {92--101},
     year = {1996},
     volume = {106},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1996_106_1_a7/}
}
TY  - JOUR
AU  - N. V. Antonov
AU  - S. V. Borisenok
AU  - V. I. Girina
TI  - Renormalization group in the theory of fully developed turbulence. Composite operators of canonical dimension eight
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1996
SP  - 92
EP  - 101
VL  - 106
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1996_106_1_a7/
LA  - ru
ID  - TMF_1996_106_1_a7
ER  - 
%0 Journal Article
%A N. V. Antonov
%A S. V. Borisenok
%A V. I. Girina
%T Renormalization group in the theory of fully developed turbulence. Composite operators of canonical dimension eight
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1996
%P 92-101
%V 106
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1996_106_1_a7/
%G ru
%F TMF_1996_106_1_a7
N. V. Antonov; S. V. Borisenok; V. I. Girina. Renormalization group in the theory of fully developed turbulence. Composite operators of canonical dimension eight. Teoretičeskaâ i matematičeskaâ fizika, Tome 106 (1996) no. 1, pp. 92-101. http://geodesic.mathdoc.fr/item/TMF_1996_106_1_a7/

[1] Monin A. S., Yaglom A. M., Statisticheskaya gidromekhanika, T. 2, Nauka, M., 1967

[2] McComb W. D., The Physics of Fluid Turbulence, Clarendon, Oxford, 1990 | MR

[3] Adzhemyan L. Ts., Antonov N. V., Vasilev A. N., ZhETF, 95:4 (1989), 1272–1288

[4] De Dominicis C., Martin P. C., Phys. Rev., A29:1 (1979), 419–422 | DOI

[5] Antonia R. A., Satyaprakash B. R., Hussain A., J. Fluid Mech., 119:1 (1982), 55–89 ; Anselmet F., Gagne Y., Hopfinger E., Antonia R. A., J. Fluid Mech., 140:1 (1984), 63–89 ; Antonia R. A., Hopfinger E., Gagne Y., Anselmet F., Phys. Rev., A30:5 (1984), 2704–2707 | DOI | MR | DOI | MR | DOI

[6] Kuznetsov V. R., Sabelnikov V. A., Turbulentnost i gorenie, Nauka, M., 1986 ; Кузнецов В. Р., Прасковский А. А., Сабельников В. А., Изв. АН СССР. Сер. МЖГ, 1988, No 6, 51–59 | MR

[7] Adzhemyan L. Ts., Vasilev A. N., Pismak Yu. M., TMF, 57:2 (1983), 268–281 | MR | Zbl

[8] Adzhemyan L. Ts., Vasilev A. N., Gnatich M., TMF, 74:2 (1988), 180–191 | MR

[9] Antonov N. V., Zap. nauchn. sem. LOMI, 169, 1988, 18–28 | Zbl

[10] Adzhemyan L. Ts., Antonov N. V., Kim T. L., TMF, 100:3 (1994), 382–401 | MR | Zbl

[11] Antonov N. V., Zap. nauchn. sem. LOMI, 189, 1991, 15–23

[12] Antonov N. V., Vestnik SPbU. Ser. Fiz., Khim., 1992, no. 3 (18), 3–9; No 4 (25), 6–11 | Zbl

[13] Yakhot V., She Z.-S., Orszag S. A., Phys. Fluids, A1(2) (1989), 289–293 | DOI | MR | Zbl

[14] Kollinz Dzh., Perenormirovka, Mir, M., 1988 | MR

[15] Yakhot V., Smith L. M., J. Sci. Comp., 7:1 (1992), 35–60 | DOI | MR

[16] Vasilev A. N., Funktsionalnye metody v kvantovoi teorii polya i statistike, Izd-vo LGU, L., 1976

[17] Adzhemyan L. Ts., Antonov N. V., Vasilev A. N., Perekalin M. M., Zap. nauchn. sem. LOMI, 224, 1995, 43–54 ; Антонов Н. В., Васильев А. Н., “Ренормализационная группа в теории развитой турбулентности. Проблема обоснования гипотез Колмогорова для составных операторов”, Направлено в ЖЭТФ | Zbl