Asymptotic solutions for electromagnetic wave in an optical nonlinear cylinder
Teoretičeskaâ i matematičeskaâ fizika, Tome 106 (1996) no. 1, pp. 84-91
Cet article a éte moissonné depuis la source Math-Net.Ru
The interaction of electromagnetic waves with a cylinder whose dielectric permittivity depends on the field is considered. The asymptotic solutions that appear to be the solutions of modifications of the nonlinear Schrödinger equation are obtained.
@article{TMF_1996_106_1_a6,
author = {L. A. Uvarova and V. K. Fedyanin},
title = {Asymptotic solutions for electromagnetic wave in an optical nonlinear cylinder},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {84--91},
year = {1996},
volume = {106},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1996_106_1_a6/}
}
TY - JOUR AU - L. A. Uvarova AU - V. K. Fedyanin TI - Asymptotic solutions for electromagnetic wave in an optical nonlinear cylinder JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1996 SP - 84 EP - 91 VL - 106 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_1996_106_1_a6/ LA - ru ID - TMF_1996_106_1_a6 ER -
L. A. Uvarova; V. K. Fedyanin. Asymptotic solutions for electromagnetic wave in an optical nonlinear cylinder. Teoretičeskaâ i matematičeskaâ fizika, Tome 106 (1996) no. 1, pp. 84-91. http://geodesic.mathdoc.fr/item/TMF_1996_106_1_a6/
[1] Akhmanov S. A., Sukhorukov A. P., Khokhlov R. V., UFN, 93:1 (1967), 19–70 | DOI | MR
[2] Gibbs Kh., Opticheskaya bistabilnost. Upravlenie svetom s pomoschyu sveta, Mir, M., 1977
[3] Mikhalake D., Nazmitdinov R. G., Fedyanin V. K., EChAYa, 20:1 (1989), 198–253
[4] Ablovits M., Singur Kh., Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR
[5] Boren K., Khafmen D., Pogloschenie i rasseyanie sveta malymi chastitsami, Mir, M., 1986
[6] Burtsov S. P., Zakharov V. E., Mikhailov A. V., TMF, 70:3 (1987), 323–341 | MR
[7] Makhankov V. G., Fedyanin V. K., Phys. Rep., 104 (1984) | DOI | MR
[8] Akhmediev N. N., Eleonskii V. M., Kulagin N. E., TMF, 72:2 (1987), 183–196 | MR | Zbl