On a spectral condition for infrared singular quantum fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 105 (1995) no. 3, pp. 405-411 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of formulating the spectral condition for vacuum expectation values of quantum fields with singular infrared behavior is discussed. It is shown that this problem is closely connected with the problem of extending the Paley–Wiener–Schwartz theorem to wider distribution classes. Studying this connection leads to a generalized spectral condition applicable to fields of arbitrarily high singularity.
@article{TMF_1995_105_3_a5,
     author = {M. A. Soloviev},
     title = {On a~spectral condition for infrared singular quantum fields},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {405--411},
     year = {1995},
     volume = {105},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_105_3_a5/}
}
TY  - JOUR
AU  - M. A. Soloviev
TI  - On a spectral condition for infrared singular quantum fields
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 405
EP  - 411
VL  - 105
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_105_3_a5/
LA  - ru
ID  - TMF_1995_105_3_a5
ER  - 
%0 Journal Article
%A M. A. Soloviev
%T On a spectral condition for infrared singular quantum fields
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 405-411
%V 105
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1995_105_3_a5/
%G ru
%F TMF_1995_105_3_a5
M. A. Soloviev. On a spectral condition for infrared singular quantum fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 105 (1995) no. 3, pp. 405-411. http://geodesic.mathdoc.fr/item/TMF_1995_105_3_a5/

[1] Wightman A.S., “The choice of test functions in quantum field theory”, Adv. Math. Suppl. Stud., 7B, Academic Press, New York, 1981, 769–791 | MR

[2] Moschella U., Strocchi F., Lett. Math. Phys., 24 (1992), 103 | DOI | MR | Zbl

[3] Moschella U., J. Math. Phys., 34 (1993), 535 | DOI | MR | Zbl

[4] Gelfand I.M., Shilov G.E., Obobschennye funktsii, T. 2, Fizmatgiz, M., 1958 | MR

[5] Fainberg V.Ya., Soloviev M.A., Ann.Phys., 113 (1978), 421 | DOI | MR | Zbl

[6] Efimov G.V., Problemy kvantovoi teorii nelokalnykh vzaimodeistvii, Nauka, M., 1985 | MR | Zbl

[7] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, T.1, Mir, M., 1986 | MR

[8] Bogolyubov N.N., Logunov A.A., Oksak A.I., Todorov I.T., Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987 | MR

[9] Solovev M.A., TMF, 7 (1971), 183 | MR | Zbl

[10] Bruning E., Nagamachi S., J. Math. Phys., 30 (1989), 2340 | DOI | MR | Zbl

[11] Capri A.Z., Ferrari R., J. Math. Phys., 25 (1984), 141 | DOI | MR

[12] Vladimirov V.S., Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR

[13] Fainberg V.Ya., Solovev M.A., 1992, 93, 514 | MR | Zbl

[14] Soloviev M.A., “Beyond the theory of hyperfunctions”, Developments in Mathematics. The Moscow School, Chapman and Hall, London, 1993, 131–193 | MR | Zbl

[15] Soloviev M.A., Lett. Math. Phys., 33:1 (1995), 49–59 | DOI | MR | Zbl

[16] Khermander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968 | MR

[17] Komatsu H., J. Fac. Sci. Univ. Tokyo. Sect. 1 A., 20 (1973), 25 | MR | Zbl

[18] Solovev M.A., “Lokalnye i nelokalnye kvantovye polya”, Trudy FIAN, 209, Nauka, M., 1993, 121–208 | MR