On physical interpretations of fractional integration and differentiation
Teoretičeskaâ i matematičeskaâ fizika, Tome 105 (1995) no. 3, pp. 393-404 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Is there a relation between fractional calculus and fractal geometry? Can a fractional order system be represented by a causal dynamical model? These are the questions recently debated in the scientific community. The author intends to answer to these questions. In the first part of the paper, some recently suggested models are reviewed and no convincing evidence is found for any dynamical model of a fractional order system having been built with the help of fractals. Linear filters with constant lumped parameters have a very limited use as approximations of fractional order systems. The model suggested in the paper is a state-space representation with parameters as functions of the independent variable. Regularization of fractional differentiation is considered and asymptotic error estimates, as well as simulation results, are presented.
@article{TMF_1995_105_3_a4,
     author = {R. S. Rutman},
     title = {On physical interpretations of fractional integration and differentiation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {393--404},
     year = {1995},
     volume = {105},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_105_3_a4/}
}
TY  - JOUR
AU  - R. S. Rutman
TI  - On physical interpretations of fractional integration and differentiation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 393
EP  - 404
VL  - 105
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_105_3_a4/
LA  - ru
ID  - TMF_1995_105_3_a4
ER  - 
%0 Journal Article
%A R. S. Rutman
%T On physical interpretations of fractional integration and differentiation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 393-404
%V 105
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1995_105_3_a4/
%G ru
%F TMF_1995_105_3_a4
R. S. Rutman. On physical interpretations of fractional integration and differentiation. Teoretičeskaâ i matematičeskaâ fizika, Tome 105 (1995) no. 3, pp. 393-404. http://geodesic.mathdoc.fr/item/TMF_1995_105_3_a4/

[1] Gorenflo R., Vessela S., Abel integral equations: analysis and applications, Springer-Verlag, Berlin, 1991 | MR

[2] Nigmatullin R. R., “The temporal fractional integral and its physical sense. Géometrie fractale et hyperbolique / derivation fractionnaire et fractale: applications dans les science de l'ingenieur et en économie”, Ecole d'été internationale, Document de Travail (Bordeaux, France, 3–4 Juillet 1994)

[3] Beyer H., Kempfle S., “Dämpfungsbeschreibung mittels gebrochener Abteilungen”, Zeitschrift für Angewandte Mathematik und Mechanik (to appear)

[4] Weber V. K., Research in integrodifferential equations in Kirgizia, no. 16, Ilim, Frunze, 1983, 349–356 (in Russian); no. 18, 1985, 301–305

[5] Nigmatullin R. R., Theor. Mathem. Phys., 90 (1992), 242–257 | DOI | MR

[6] Rutman R., TMF, 100 (1994), 476–478 | MR | Zbl

[7] Ross B., Rubin B., personal communications

[8] Kempfle S., Mainardi F., Nigmatullin R. R., Rubin B., personal communications

[9] Zähle M., Topology, measures, and fractals, 66, eds. C. Bandt et al., Akademie Verlag, Berlin, 1992, 121–126 ; Patzschke N., Zähle M., Proc. Amer. Math. Soc., 117 (1993), 137–144 | MR | DOI | MR | Zbl

[10] Samko S. G., Kilbas A. A., Marichev O. I., Integrals and derivatives of fractional order and some of their applications, Gordon and Breach, London, 1993 ; transl. from Russian, Nauka i Tekhnika, Minsk, 1987; Kiraykova V., Generalized fractional calculus and applications, Longman Sci. Tech., Harlow, Essex, 1994 | MR | Zbl | MR

[11] Tricot C., Dérivation fractionnaire et dimension fractale, Tech. Rep. CRM-1532, Université de Montréal, 1988

[12] Oustaloup A., Systéms asservis d'ordre fractionnaire, Masson, Paris, 1983; La commande CRONE, Hermes, Paris, 1991 | Zbl

[13] Matignon D., Réprésentation en variables d'état de modéles de guide d'ondes avec dérivation fractionnaire, Thése IRCAM, Paris, 1994

[14] Rutman R., Theory and practice of geophysical data inversion, eds. Vogel A. et al., Vieweg, Braunschwieg–Wiesbaben, 1992, 49–71 | DOI

[15] Andersen R. S., J. Inst. Math. Its Appl., 17 (1976), 329–342 ; Bokasten K. J., J. Opt. Soc. Amer., 51 (1961), 943–947 ; Maldonaldo C. D., Caron A. P., Olsen H. N., J. Opt. Soc. Amer., 55 (1965), 1247–1254 ; Minerbo G. N., Levy M. E., SIAM J. Numer. Anal., 6 (1965), 598–616 ; Nestor O. H., Olsen H. N., SIAM Rev., 2 (1960), 200–207 | DOI | MR | DOI | DOI | DOI | MR | DOI | MR | Zbl

[16] Mikhlin S. G., Multidimensional singular integrals and integral equations, Pergamon Press, 1965 | MR

[17] Oldham K. B., Spanier J., The fractional calculus, Academic Press, New York, 1974 | MR | Zbl