Ramanujan-type continuous measures for classical $q$-polynomials
Teoretičeskaâ i matematičeskaâ fizika, Tome 105 (1995) no. 3, pp. 383-392
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that Ramanujan-type measures for a hierarchy of classical $q$-orthogonal polynomials can be systematically built from simple cases of the continuous $q$-Hermite and $q^{-1}$-Hermite polynomials by using the Berg–Ismail procedure of attaching generating functions to measures. The application of this technique leads also to the evaluation of Ramanujan-type integrals for the Al-Salam–Chihara polynomials both when $0$ and $q>1$, as well as for the product of four particular nonterminating basic hypergeometric functions ${}_2\phi _1$.
@article{TMF_1995_105_3_a3,
author = {N. M. Atakishiyev},
title = {Ramanujan-type continuous measures for classical $q$-polynomials},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {383--392},
publisher = {mathdoc},
volume = {105},
number = {3},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1995_105_3_a3/}
}
N. M. Atakishiyev. Ramanujan-type continuous measures for classical $q$-polynomials. Teoretičeskaâ i matematičeskaâ fizika, Tome 105 (1995) no. 3, pp. 383-392. http://geodesic.mathdoc.fr/item/TMF_1995_105_3_a3/