Photon statistics under multi-quantum interaction of generalized two-level system with strong squeezed electromagnetic field
Teoretičeskaâ i matematičeskaâ fizika, Tome 105 (1995) no. 3, pp. 471-477 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Interaction of squeezed light with a two-level system having a degenerate excited level is discussed. The dependence of relative fluctuation of the electromagnetic field density $\eta$ as function of squeezing parameters and process photon number $n$ are found. It is shown that when the field intensity is slow and $n$ is small, the value of $\eta$ weakly depends on the method of squeezing. The value of $\eta$ becomes larger under the phase squeezing than under the amplitude squeezing when the field intensity and $n$ increase.
@article{TMF_1995_105_3_a12,
     author = {O. B. Prepelitsa},
     title = {Photon statistics under multi-quantum interaction of generalized two-level system with strong squeezed electromagnetic field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {471--477},
     year = {1995},
     volume = {105},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_105_3_a12/}
}
TY  - JOUR
AU  - O. B. Prepelitsa
TI  - Photon statistics under multi-quantum interaction of generalized two-level system with strong squeezed electromagnetic field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 471
EP  - 477
VL  - 105
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_105_3_a12/
LA  - ru
ID  - TMF_1995_105_3_a12
ER  - 
%0 Journal Article
%A O. B. Prepelitsa
%T Photon statistics under multi-quantum interaction of generalized two-level system with strong squeezed electromagnetic field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 471-477
%V 105
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1995_105_3_a12/
%G ru
%F TMF_1995_105_3_a12
O. B. Prepelitsa. Photon statistics under multi-quantum interaction of generalized two-level system with strong squeezed electromagnetic field. Teoretičeskaâ i matematičeskaâ fizika, Tome 105 (1995) no. 3, pp. 471-477. http://geodesic.mathdoc.fr/item/TMF_1995_105_3_a12/

[1] Yuen H. P., Phys. Rev., A13 (1976), 2226 | DOI

[2] Loudon R., Knight P., J. Mod. Phys., 34 (1987), 709 | MR | Zbl

[3] Slusher R., Hollber L., Phys. Rev. Lett., 55 (1985), 2409 | DOI

[4] Shelby R., Levenson M., Permulter S. et all., Phys. Rev. Lett., 57 (1986), 691 | DOI

[5] Ling-An Wu, Kimble H., Hall J., Phys. Rev. Lett., 57 (1986), 2520 | DOI

[6] Jansky J., Yushin Y., Phys. Rev., A36 (1987), 1288 | DOI

[7] Enaki N. A., Prepelitsa O. B., ZhETF, 101 (1992), 44

[8] Belousov A., Kovarsky V., Second International Workshop on Squeezed States and Uncertainty Relations, 105

[9] Milburn G., Opt. Acta, 31 (1984), 671 | DOI

[10] Gerry C., Phys. Rev., A37 (1988), 2683 | DOI | MR

[11] Shaozheng Jin, J. Opt. Soc. Am., B8 (1991), 668

[12] Glauber R., Kvantovaya optika i radiofizika, Per. s angl. i frants., eds. O. V. Bogdankevicha i O. M. Kroshina, Mir, M., 1966, S. 91

[13] Gradshtein O. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1962 | MR

[14] Baldini G., Phys. Rev., 128 (1962), 1562 | DOI