Integral intertwining operators and quantum homogeneous spaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 105 (1995) no. 3, pp. 355-363
Cet article a éte moissonné depuis la source Math-Net.Ru
Integral representations of functions on quantum homogeneous spaces are considered. The Dirichlet problem for the quantum ball is solved and a $q$-analog of the Cauchy–Szegö formula is derived.
@article{TMF_1995_105_3_a0,
author = {L. L. Vaksman},
title = {Integral intertwining operators and quantum homogeneous spaces},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {355--363},
year = {1995},
volume = {105},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1995_105_3_a0/}
}
L. L. Vaksman. Integral intertwining operators and quantum homogeneous spaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 105 (1995) no. 3, pp. 355-363. http://geodesic.mathdoc.fr/item/TMF_1995_105_3_a0/
[1] Drinfeld V.G., Proc. Internat. Congr. Math., 1. Amer. Math. Soc. Providence, RI. 1986, Berkeley, 1986, 798–820
[2] Reshetikhin N.Yu., Takhtadzhyan L.A., Faddeev L.D., Algebra i analiz, 1:1 (1989), 178–206 | MR
[3] Vaksman L.L., Soibelman Ya.S., Funkts. analiz i ego prilozh., 22:3 (1988), 1–14 | MR
[4] Vaksman L.L., Matematicheskaya fizika, analiz, geometriya, 1:3 (1994) | MR | Zbl
[5] Vaksman L.L., Korogodskii L.I., Garmonicheskii analiz na kvantovykh giperboloidakh, Preprint ITF AN USSR, Kiev, 1990 | Zbl
[6] Rudin V., Teoriya funktsii v edinichnom share iz $\mathbb C^n$, Mir, M., 1984 | MR | Zbl
[7] Soibelman Ya.S., Vaksman L.L., Algebra i analiz, 2:5 (1990), 101–120 | MR | Zbl