Integral intertwining operators and quantum homogeneous spaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 105 (1995) no. 3, pp. 355-363
Voir la notice de l'article provenant de la source Math-Net.Ru
Integral representations of functions on quantum homogeneous spaces are considered. The Dirichlet problem for the quantum ball is solved and a $q$-analog of the Cauchy–Szegö formula is derived.
@article{TMF_1995_105_3_a0,
author = {L. L. Vaksman},
title = {Integral intertwining operators and quantum homogeneous spaces},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {355--363},
publisher = {mathdoc},
volume = {105},
number = {3},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1995_105_3_a0/}
}
L. L. Vaksman. Integral intertwining operators and quantum homogeneous spaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 105 (1995) no. 3, pp. 355-363. http://geodesic.mathdoc.fr/item/TMF_1995_105_3_a0/