Integral intertwining operators and quantum homogeneous spaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 105 (1995) no. 3, pp. 355-363

Voir la notice de l'article provenant de la source Math-Net.Ru

Integral representations of functions on quantum homogeneous spaces are considered. The Dirichlet problem for the quantum ball is solved and a $q$-analog of the Cauchy–Szegö formula is derived.
@article{TMF_1995_105_3_a0,
     author = {L. L. Vaksman},
     title = {Integral intertwining operators and quantum homogeneous spaces},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {355--363},
     publisher = {mathdoc},
     volume = {105},
     number = {3},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_105_3_a0/}
}
TY  - JOUR
AU  - L. L. Vaksman
TI  - Integral intertwining operators and quantum homogeneous spaces
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 355
EP  - 363
VL  - 105
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_105_3_a0/
LA  - ru
ID  - TMF_1995_105_3_a0
ER  - 
%0 Journal Article
%A L. L. Vaksman
%T Integral intertwining operators and quantum homogeneous spaces
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 355-363
%V 105
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1995_105_3_a0/
%G ru
%F TMF_1995_105_3_a0
L. L. Vaksman. Integral intertwining operators and quantum homogeneous spaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 105 (1995) no. 3, pp. 355-363. http://geodesic.mathdoc.fr/item/TMF_1995_105_3_a0/