$SO(N)$-invariant Wess--Zumino action and its quantization
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 105 (1995) no. 2, pp. 270-291
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A consistent quantization scheme for anomalous chiral models is discussed. It is based on modification of the classical action by addition to it of the Wess–Zumino term. $SO(N)$-invariant WZ action of the $SU(N)$ gauge model is constructed and the special case for $N=3$ is considered in details.
			
            
            
            
          
        
      @article{TMF_1995_105_2_a7,
     author = {A. A. Slavnov and S. A. Frolov and C. V. Sochichiu},
     title = {$SO(N)$-invariant {Wess--Zumino} action and its quantization},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {270--291},
     publisher = {mathdoc},
     volume = {105},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_105_2_a7/}
}
                      
                      
                    TY - JOUR AU - A. A. Slavnov AU - S. A. Frolov AU - C. V. Sochichiu TI - $SO(N)$-invariant Wess--Zumino action and its quantization JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1995 SP - 270 EP - 291 VL - 105 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1995_105_2_a7/ LA - ru ID - TMF_1995_105_2_a7 ER -
A. A. Slavnov; S. A. Frolov; C. V. Sochichiu. $SO(N)$-invariant Wess--Zumino action and its quantization. Teoretičeskaâ i matematičeskaâ fizika, Tome 105 (1995) no. 2, pp. 270-291. http://geodesic.mathdoc.fr/item/TMF_1995_105_2_a7/
