$SO(N)$-invariant Wess–Zumino action and its quantization
Teoretičeskaâ i matematičeskaâ fizika, Tome 105 (1995) no. 2, pp. 270-291 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A consistent quantization scheme for anomalous chiral models is discussed. It is based on modification of the classical action by addition to it of the Wess–Zumino term. $SO(N)$-invariant WZ action of the $SU(N)$ gauge model is constructed and the special case for $N=3$ is considered in details.
@article{TMF_1995_105_2_a7,
     author = {A. A. Slavnov and S. A. Frolov and C. V. Sochichiu},
     title = {$SO(N)$-invariant {Wess{\textendash}Zumino} action and its quantization},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {270--291},
     year = {1995},
     volume = {105},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_105_2_a7/}
}
TY  - JOUR
AU  - A. A. Slavnov
AU  - S. A. Frolov
AU  - C. V. Sochichiu
TI  - $SO(N)$-invariant Wess–Zumino action and its quantization
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 270
EP  - 291
VL  - 105
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_105_2_a7/
LA  - ru
ID  - TMF_1995_105_2_a7
ER  - 
%0 Journal Article
%A A. A. Slavnov
%A S. A. Frolov
%A C. V. Sochichiu
%T $SO(N)$-invariant Wess–Zumino action and its quantization
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 270-291
%V 105
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1995_105_2_a7/
%G ru
%F TMF_1995_105_2_a7
A. A. Slavnov; S. A. Frolov; C. V. Sochichiu. $SO(N)$-invariant Wess–Zumino action and its quantization. Teoretičeskaâ i matematičeskaâ fizika, Tome 105 (1995) no. 2, pp. 270-291. http://geodesic.mathdoc.fr/item/TMF_1995_105_2_a7/

[1] Adler L.S., Phys. Rev., 177:5(11) (1969), 2426–2438 | DOI

[2] Bardeen W.A., Phys. Rev., 184:5 (1969), 1848–1859 | DOI

[3] Gross D.J., Jackiw R., Phys. Rev., D6:2 (1972), 477–493

[4] Polyakov A.M., Phys. Lett., B103 (1981), 207 | DOI | MR

[5] Jackiw R., Rajaraman R., Phys. Rev. Lett., 54:12 (1985), 1219–1221 | DOI | MR | Zbl

[6] Faddeev L.D., Shatashvili S.L., Phys. Lett., B167:2 (1986), 225–228 | DOI | MR

[7] Faddeev L.D., Phys. Lett., B145:1,2 (1984), 81–86 | DOI | MR

[8] Faddeev L.D., Shatashvili S.L., TMF, 60:2 (1984), 206 | MR

[9] Mickelsson J., Commun. Math. Phys., 97 (1985), 361 | DOI | MR | Zbl

[10] Gomis J., Paris J., Nucl. Phys., B431 (1994), 378–412 | DOI | MR | Zbl

[11] Frolov S.A., Slavnov A.A., Phys. Lett., B269 (1991), 377 | DOI

[12] Frolov S.A., Slavnov A.A., Mod. Phys. Lett., A6 (1991), 3621 | DOI | Zbl

[13] Slavnoe A.A., Frolov S.A., TMF, 92:3 (1992), 473 | MR

[14] Wess J., Zumino B., Phys. Lett., B37:1 (1971), 95–97 | DOI | MR

[15] Stora R., “Algebraic structure and topological origin of anomalies”, Progress in gauge field theory, eds. H. Lehman, Plenum Press, New-York, 1984, 87–102 | MR

[16] Zumino B., “Algebraic origin of anomalies”, Relativity groups and topology II, eds. B.S. De Witt, R. Stora, North Holland, Amsterdam, 1984, 1293

[17] Frolov S.A., Slavnov A.A., Sochichiu C., Phys. Lett., B301 (1993), 59–66 | DOI

[18] Frolov S.A., Slavnov A.A., Sochichiu C., Canonical quantization of the degenerate WZ action including chiral interaction with gauge fields, Preprint hep-th 9411182 (prinyato k pechati v Mod. Phys. Lett.)

[19] Shatashvili S.L., TMF, 71 (1987), 40 | MR

[20] Cremer E., Julia B., Phys. Lett., B80 (1978), 48 | DOI

[21] Eichenherr H., Forger M., Nucl. Phys., B155 (1979), 381 | DOI | MR

[22] Wu Yong-Shi, Phys. Lett., B153:1, 2 (1985), 70 | MR

[23] Kobayashi M., Seo K., Sugamoto A., Nucl. Phys., B273 (1986), 607 | DOI

[24] Jo S., Nucl. Phys., B259:4 (1985), 616–637

[25] Alekseev A.Yu., Madaichik L., Faddeev, L.D. Shatashvili S.L., TMF, 73:2 (1987), 187–190 | MR

[26] Knizhnik V., Zamolodchikov A., Nucl. Phys., B247 (1984), 83–103 | DOI | MR | Zbl

[27] Henneaux M., Slavnov A., Phys. Lett., B338 (1994), 47–50 | DOI | MR