Nonlinear differential operators of the first and the second orders, possessing invariant linear spaces of the maximal dimension
Teoretičeskaâ i matematičeskaâ fizika, Tome 105 (1995) no. 2, pp. 198-207
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In connection with the approach to the construction of explicit solutions for nonlinear partial differential equations, proposed by S. S. Titov and V. A. Galaktionov, the problem of description of nonlinear differential operators $F[y(x)]$ possessing finite-dimensional invariant linear spaces arises. It was proved previously that for the $m$-th order operators the dimension of an invariant space cannot еxceed $2m+1$. In the present paper we consider the cases, when this value is attained. The first and the second order operators are studied. It is shown that they are quadratic in $y$. The full description of the first order operators and of the second order quadratic operators with constant coefficients is obtained.
@article{TMF_1995_105_2_a1,
     author = {S. R. Svirshchevskii},
     title = {Nonlinear differential operators of the first and the second orders, possessing invariant linear spaces of the maximal dimension},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {198--207},
     year = {1995},
     volume = {105},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_105_2_a1/}
}
TY  - JOUR
AU  - S. R. Svirshchevskii
TI  - Nonlinear differential operators of the first and the second orders, possessing invariant linear spaces of the maximal dimension
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 198
EP  - 207
VL  - 105
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_105_2_a1/
LA  - ru
ID  - TMF_1995_105_2_a1
ER  - 
%0 Journal Article
%A S. R. Svirshchevskii
%T Nonlinear differential operators of the first and the second orders, possessing invariant linear spaces of the maximal dimension
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 198-207
%V 105
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1995_105_2_a1/
%G ru
%F TMF_1995_105_2_a1
S. R. Svirshchevskii. Nonlinear differential operators of the first and the second orders, possessing invariant linear spaces of the maximal dimension. Teoretičeskaâ i matematičeskaâ fizika, Tome 105 (1995) no. 2, pp. 198-207. http://geodesic.mathdoc.fr/item/TMF_1995_105_2_a1/

[1] Titov S. S., Aerodinamika, Mezhvuz. sb., Saratov. un-t, Saratov, 1988, 104–109

[2] Galaktionov V. A., Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities, report No AM-91-11, School of Math., University of Bristol, 1991 | MR

[3] Ovsyannikov L. V., Issledovanie gazovykh techenii s pryamoi zvukovoi liniei, Dis. kand. fiz.-matem. nauk, L., 1948

[4] Pokhozhaev S. I., Zhurnal prikl. mekhaniki i tekhn. fiziki, 1989, no. 2, 5–10 | MR

[5] Kershner R., Acta Math. Acad. Sci. Hungaricae, 32:3–4 (1978), 301–330 | DOI | MR | Zbl

[6] Titov S. S., Analiticheskie metody v mekhanike sploshnoi sredy, no. 33, UNTs AN SSSR, Sverdlovsk, 1979, 65–72

[7] Galaktionov V. A., Posashkov S. A., ZhVMiMF, 29:4 (1989), 497–506 | MR

[8] Galaktionov V. A., Posashkov S. A., ZhVMiMF, 34:3 (1994), 373–383 | MR | Zbl

[9] Svirschevskii S. R., Sovremennyi gruppovoi analiz, Mezhduved. sb., MFTI, M., 1993, 75–83

[10] Svirschevskii S. R., Vysshie simmetrii lineinykh obyknovennykh differentsialnykh uravnenii i lineinye prostranstva, invariantnye otnositelno nelineinykh operatorov, Preprint No 14, IMM RAN, M., 1993

[11] Ibragimov N. Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR

[12] Svirschevskii S. R., Nelineinye differentsialnye operatory, obladayuschie invariantnymi lineinymi prostranstvami maksimalnoi razmernosti, Preprint No 20, IMM RAN, M., 1994