Nonlinear differential operators of the first and the second orders, possessing invariant linear spaces of the maximal dimension
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 105 (1995) no. 2, pp. 198-207
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In connection with the approach to the construction of explicit solutions for nonlinear partial differential equations, proposed by S. S. Titov and V. A. Galaktionov, the problem of description of nonlinear differential operators $F[y(x)]$ possessing finite-dimensional invariant linear spaces arises. It was proved previously that for the $m$-th order operators the dimension of an invariant space cannot еxceed $2m+1$. In the present paper we consider the cases, when this value is attained. The first and the second order operators are studied. It is shown that they are quadratic in $y$. The full description of the first order operators and of the second order quadratic operators with constant coefficients is obtained.
			
            
            
            
          
        
      @article{TMF_1995_105_2_a1,
     author = {S. R. Svirshchevskii},
     title = {Nonlinear differential operators of the first and the second orders, possessing invariant linear spaces of the maximal dimension},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {198--207},
     publisher = {mathdoc},
     volume = {105},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_105_2_a1/}
}
                      
                      
                    TY - JOUR AU - S. R. Svirshchevskii TI - Nonlinear differential operators of the first and the second orders, possessing invariant linear spaces of the maximal dimension JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1995 SP - 198 EP - 207 VL - 105 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1995_105_2_a1/ LA - ru ID - TMF_1995_105_2_a1 ER -
%0 Journal Article %A S. R. Svirshchevskii %T Nonlinear differential operators of the first and the second orders, possessing invariant linear spaces of the maximal dimension %J Teoretičeskaâ i matematičeskaâ fizika %D 1995 %P 198-207 %V 105 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1995_105_2_a1/ %G ru %F TMF_1995_105_2_a1
S. R. Svirshchevskii. Nonlinear differential operators of the first and the second orders, possessing invariant linear spaces of the maximal dimension. Teoretičeskaâ i matematičeskaâ fizika, Tome 105 (1995) no. 2, pp. 198-207. http://geodesic.mathdoc.fr/item/TMF_1995_105_2_a1/