Sine-Gordon type field in spacetime of arbitrary dimension.~II:~Stochastic quantization
Teoretičeskaâ i matematičeskaâ fizika, Tome 105 (1995) no. 2, pp. 179-197
Voir la notice de l'article provenant de la source Math-Net.Ru
Using the theory of Dirichlet forms we prove the existence of a distribution-valued diffusion process such that the Nelson measure of a field with bounded interaction density is its invariant probability measure. A Langevin equation in mathematically correct form is formulated which is satisfied by the process. The drift term of the equation is interpreted as a renormalized Euclidean current operator.
@article{TMF_1995_105_2_a0,
author = {A. I. Kirillov},
title = {Sine-Gordon type field in spacetime of arbitrary {dimension.~II:~Stochastic} quantization},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {179--197},
publisher = {mathdoc},
volume = {105},
number = {2},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1995_105_2_a0/}
}
TY - JOUR AU - A. I. Kirillov TI - Sine-Gordon type field in spacetime of arbitrary dimension.~II:~Stochastic quantization JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1995 SP - 179 EP - 197 VL - 105 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1995_105_2_a0/ LA - ru ID - TMF_1995_105_2_a0 ER -
A. I. Kirillov. Sine-Gordon type field in spacetime of arbitrary dimension.~II:~Stochastic quantization. Teoretičeskaâ i matematičeskaâ fizika, Tome 105 (1995) no. 2, pp. 179-197. http://geodesic.mathdoc.fr/item/TMF_1995_105_2_a0/