Sine-Gordon type field in spacetime of arbitrary dimension. II: Stochastic quantization
Teoretičeskaâ i matematičeskaâ fizika, Tome 105 (1995) no. 2, pp. 179-197 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the theory of Dirichlet forms we prove the existence of a distribution-valued diffusion process such that the Nelson measure of a field with bounded interaction density is its invariant probability measure. A Langevin equation in mathematically correct form is formulated which is satisfied by the process. The drift term of the equation is interpreted as a renormalized Euclidean current operator.
@article{TMF_1995_105_2_a0,
     author = {A. I. Kirillov},
     title = {Sine-Gordon type field in spacetime of arbitrary {dimension.~II:~Stochastic} quantization},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {179--197},
     year = {1995},
     volume = {105},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_105_2_a0/}
}
TY  - JOUR
AU  - A. I. Kirillov
TI  - Sine-Gordon type field in spacetime of arbitrary dimension. II: Stochastic quantization
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 179
EP  - 197
VL  - 105
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_105_2_a0/
LA  - ru
ID  - TMF_1995_105_2_a0
ER  - 
%0 Journal Article
%A A. I. Kirillov
%T Sine-Gordon type field in spacetime of arbitrary dimension. II: Stochastic quantization
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 179-197
%V 105
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1995_105_2_a0/
%G ru
%F TMF_1995_105_2_a0
A. I. Kirillov. Sine-Gordon type field in spacetime of arbitrary dimension. II: Stochastic quantization. Teoretičeskaâ i matematičeskaâ fizika, Tome 105 (1995) no. 2, pp. 179-197. http://geodesic.mathdoc.fr/item/TMF_1995_105_2_a0/

[1] Kirillov A. I., TMF, 93:2 (1992), 249–263 | MR

[2] Kirillov A. I., TMF, 98:1 (1994), 12–28 | MR | Zbl

[3] Borkar B. S., Chari R. T., Mitter S. K., J. Funct. Anal., 81:1 (1988), 184–206 | DOI | MR | Zbl

[4] Namiki M., Stochastic Quantization, Springer, Berlin – Heidelberg – New York, 1992 | MR

[5] Glimm Dzh., Dzhaffe A., Matematicheskie metody kvantovoi fiziki. Podkhod s ispolzovaniem funktsionalnykh integralov, Mir, M., 1984 | MR | Zbl

[6] Averbukh V. I., Smolyanov O. G., Fomin S. V., Trudy Mosk. matem. obschestva, 24, 1971, 133–174 | MR | Zbl

[7] Daletskii Yu. L., Fomin S. V., Mery i differentsialnye uravneniya v beskonechnomernykh prostranstvakh, Nauka, M., 1983 | MR

[8] Albeverio S., Hoegh-Krohn R., Z. Wahr. Verm. Geb., 40:1 (1977), 1–57 | DOI | MR | Zbl

[9] Albeverio S., Rockner M., Prob. Th. Rel. Fields, 83:3 (1989), 405–434 | DOI | MR | Zbl

[10] Albeverio S., Rockner M., J. Funct. Anal., 88:2 (1990), 395–437 | DOI | MR

[11] Albeverio S., Rockner M., Prob. Th. Rel. Fields, 89:3 (1991), 347–386 | DOI | MR | Zbl

[12] Bouleau N., Hirsch F., J. Funct. Anal., 69:2 (1986), 229–259 | DOI | MR | Zbl

[13] Kusuoka S., J. Fac. Sci. Univ. Tokyo. Sect. IA, 29 (1982), 79–95 | MR | Zbl

[14] Kirillov A. I., UMN, 49:3 (1994), 43–92 | MR | Zbl

[15] Vakhaniya N. N., Tarieladze V. I., Chobanyan S. A., Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985 | MR | Zbl

[16] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR

[17] Bogachev V. I., Smolyanov O. G., UMN, 45:3 (1990), 3–83 | MR | Zbl

[18] Albeverio S., Hida T., Potthoff J., Streit L., Phys. Lett., B217:4 (1989), 511–514 | DOI | MR

[19] Potthoff J., Streit L., J. Funct. Anal., 101:1 (1991), 212–229 | DOI | MR | Zbl