Perturbation theory for the one-dimensional Schrödinger scattering problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 105 (1995) no. 1, pp. 29-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A perturbation theory is constructed within the framework of a linear version of the variable-phase approach, with the aim of making a complete study of the problem of scattering by a superposition of the Coulomb potential and the potential $V(x)$ which decrease faster than the centrifugal potential. As a zero approximation of the theory for regular and irregular solutions to this problem, for normalization factors, scattering phase and amplitude, use is made of the corresponding functions calculated for the potential $V(x)$ cut off at a certain point $x=b$. All subsequent approximations are determined analytically by the iteration method. Perturbation theory is applied to investigate the asymptotics of the partial waves of scattering phases and amplitudes in the low-energy limit and in the limit of large angular momenta.
@article{TMF_1995_105_1_a2,
     author = {V. V. Pupyshev},
     title = {Perturbation theory for the one-dimensional {Schr\"odinger} scattering problem},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {29--45},
     year = {1995},
     volume = {105},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_105_1_a2/}
}
TY  - JOUR
AU  - V. V. Pupyshev
TI  - Perturbation theory for the one-dimensional Schrödinger scattering problem
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 29
EP  - 45
VL  - 105
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_105_1_a2/
LA  - ru
ID  - TMF_1995_105_1_a2
ER  - 
%0 Journal Article
%A V. V. Pupyshev
%T Perturbation theory for the one-dimensional Schrödinger scattering problem
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 29-45
%V 105
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1995_105_1_a2/
%G ru
%F TMF_1995_105_1_a2
V. V. Pupyshev. Perturbation theory for the one-dimensional Schrödinger scattering problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 105 (1995) no. 1, pp. 29-45. http://geodesic.mathdoc.fr/item/TMF_1995_105_1_a2/

[1] Landau L. D., Lifshits E. M., Kvantovaya mekhanika, Nauka, M., 1974 | MR

[2] Messia A., Kvantovaya mekhanika, T. 2, Nauka, M., 1979 | MR

[3] Teilor Dzh., Teoriya rasseyaniya, Mir, M., 1975

[4] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki.Teoriya rasseyaniya, T. 3, Mir, M., 1982 | MR

[5] Mentkovskii Yu. L., Chastitsa v yaderno-kulonovskom pole, Energoatomizdat, M., 1982

[6] Peierls R., Surprises in Theoretical Physics, Princeton University Press, New Jersey, 1979 | MR

[7] Kalodzhero F., Metod fazovykh funktsii v teorii potentsialnogo rasseyaniya, Mir, M., 1972

[8] Babikov V. V., Metod fazovykh funktsii v kvantovoi mekhanike, Nauka, M., 1976 | MR

[9] Au C. K. et al., Phys. Lett. A, 164 (1992), 23–27 | DOI | MR

[10] Sansone Dzh., Obyknovennye differentsialnye uravneniya, T. 1, IL, M., 1953 | MR

[11] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR

[12] Abramovits M., Stigan I. A., Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR

[13] Volterra V., Teoriya funktsionalov, integralnykh i integro-differentsialnykh uravnenii, Nauka, M., 1982 | MR

[14] Klarsfeld S., Nuovo Cimento, A 43 (1966), 3869–3886

[15] Fedoryuk M. V., Asimptotocheskie metody dlya lineinykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl

[16] Martin A., Nuovo Cimento, 31 (1964), 1229–1243 | DOI | MR

[17] Pupyshev V. V., Solovtsova O. P., YaF, 47 (1988), 60–64

[18] Pupyshev V. V., Solovtsova O. P., IJMP, A7 (1992), 2713–2739 | DOI

[19] Pupyshev V. V., Haw to build analogues of the Bessel–Clifford expansions for the sum of the repulsive Coulomb potential and central potential decreasing more rapidly than the centrifugal one?, Preprint E4-92-213, JINR, Dubna, 1992

[20] Berger R. O., Spruch L., Phys. Rev., B138 (1965), 1106–1115 | DOI