About semiboundness of $\delta$-perturbations of the Laplacian supported by curves with angle points
Teoretičeskaâ i matematičeskaâ fizika, Tome 105 (1995) no. 1, pp. 3-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Еlementary self-adjoint perturbations of the Laplacian supported by curves with singular angle points are studied in $\mathbb R^3$ and $\mathbb R^4$. The perturbations are shown to be semibounded in $\mathbb R^3$ and unsemibounded in $\mathbb R^4$. In the last case semiboundness may take place in subspaces of a given symmetry as it is shown in simple example.
@article{TMF_1995_105_1_a0,
     author = {Yu. G. Shondin},
     title = {About semiboundness of $\delta$-perturbations of the {Laplacian} supported by curves with angle points},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--17},
     year = {1995},
     volume = {105},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_105_1_a0/}
}
TY  - JOUR
AU  - Yu. G. Shondin
TI  - About semiboundness of $\delta$-perturbations of the Laplacian supported by curves with angle points
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 3
EP  - 17
VL  - 105
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_105_1_a0/
LA  - ru
ID  - TMF_1995_105_1_a0
ER  - 
%0 Journal Article
%A Yu. G. Shondin
%T About semiboundness of $\delta$-perturbations of the Laplacian supported by curves with angle points
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 3-17
%V 105
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1995_105_1_a0/
%G ru
%F TMF_1995_105_1_a0
Yu. G. Shondin. About semiboundness of $\delta$-perturbations of the Laplacian supported by curves with angle points. Teoretičeskaâ i matematičeskaâ fizika, Tome 105 (1995) no. 1, pp. 3-17. http://geodesic.mathdoc.fr/item/TMF_1995_105_1_a0/

[1] Blagoveschenskii A. S., Lavrentev K. K., Vestn. LGU. Ser. matem. mekh. astr., 1977, no. 1, 9–15 | MR | Zbl

[2] Kurylev Ya. V., Zap. nauchn. semin. LOMI AN SSSR, 78, 1978, 112–127 | MR | Zbl

[3] Cheremshantzev S. E., Preprint LOMI E-12-89, Leningrad, 1989

[4] Albeverio S., Fenstad J. E., Høegh-Krohn R., Karwowski W., Lindsrøm T., Phys. Lett., 104A (1984), 396–400 | DOI

[5] Minlos R. A., Faddeev L. D., DAN SSSR, 141:6 (1961), 1335–1338 | MR

[6] Minlos R. A., Shermatov M. Kh., Vestn. MGU. Ser. 1, matem. mekh., 1989, no. 6, 7–14 | MR | Zbl

[7] Herbst I., Commun. Math. Phys., 53:2 (1977), 285–294 | DOI | MR | Zbl

[8] Birman M. Sh., Matem. sb., 38:4 (1956), 431–450 | MR | Zbl

[9] Derkach V. A., Malamud M. M., J. Funct. Anal., 95:1 (1991), 1–95 | DOI | MR | Zbl

[10] Dell'Antonio G. F., Figary R., Teta A., Preprint S.I.S.S.A. 120/92/FM, Triest, 1992

[11] Fukushima M., Dirichlet forms and Markov processes, North Holland, Amsterdam, 1980 | MR