Boundary-value problem for the two-dimensional stationary Heisenberg magnet with non-trivial background. II
Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 3, pp. 513-529 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The investigation of the boundary-value problem on a half-plane for the two-dimensional stationary Heisenberg magnet is continued. The asymptotic behavior of "$N$-soliton" solutions is discussed. The asymptotic contribution of the continuous spectrum is calculated. The gauge equivalence of the boundary-value problems for the models of a magnet and the elliptic equation represented by the sinh-Gordon equation is considered.
@article{TMF_1995_104_3_a9,
     author = {G. G. Varzugin and E. Sh. Gutshabash and V. D. Lipovskii},
     title = {Boundary-value problem for the two-dimensional stationary {Heisenberg} magnet with non-trivial {background.~II}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {513--529},
     year = {1995},
     volume = {104},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_104_3_a9/}
}
TY  - JOUR
AU  - G. G. Varzugin
AU  - E. Sh. Gutshabash
AU  - V. D. Lipovskii
TI  - Boundary-value problem for the two-dimensional stationary Heisenberg magnet with non-trivial background. II
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 513
EP  - 529
VL  - 104
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_104_3_a9/
LA  - ru
ID  - TMF_1995_104_3_a9
ER  - 
%0 Journal Article
%A G. G. Varzugin
%A E. Sh. Gutshabash
%A V. D. Lipovskii
%T Boundary-value problem for the two-dimensional stationary Heisenberg magnet with non-trivial background. II
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 513-529
%V 104
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1995_104_3_a9/
%G ru
%F TMF_1995_104_3_a9
G. G. Varzugin; E. Sh. Gutshabash; V. D. Lipovskii. Boundary-value problem for the two-dimensional stationary Heisenberg magnet with non-trivial background. II. Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 3, pp. 513-529. http://geodesic.mathdoc.fr/item/TMF_1995_104_3_a9/

[1] Gutshabash E. Sh., Lipovskii V. D., TMF, 90:2 (1992), 259–272 | MR | Zbl

[2] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR

[3] Its A. R., DAN SSSR, 261:1 (1981), 14–18 | MR | Zbl

[4] Its A. R., Novokshenov V. Yu., Lecture Notes in Math., 1191, Springer-Verlag, Berlin–Heidelberg, 1986 | DOI | MR | Zbl

[5] Deift P., Zhou X., Ann. of Math., 137:2 (1993), 295–368 | DOI | MR | Zbl

[6] Pohlmeyer K., Commun. Math. Phys., 46:3 (1976), 207–221 | DOI | MR | Zbl

[7] Gutshabash E. Sh., Vestn. LGU, ser. fizika i khimiya, 1990, no. 4, 84–86 | MR | Zbl

[8] Beals R., Coifman R. R., Commun. Pure Appl. Math., 37 (1984), 39–90 | DOI | MR | Zbl

[9] Bobenko A. I., UMN, 46:4 (1991), 3–42 | MR

[10] Movsesyants Yu. B., ZhETF, 91:2 (1986), 493–499

[11] Joyce G., Montgomery D., J. Plasma Phys., 10:1 (1973), 107–121 | DOI

[12] Martina L., Pashaev O., Soliani G., Phys. Rev. B, 48:21 (1993), 87–91 | DOI