Polynomial supersymmetry and dynamical symmetries in quantum mechanics
Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 3, pp. 463-478 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A polynomial generalization of supersymmetry in quantum mechanics is proposed in one and two dimensions. The classification of polynomial suyperalgebras is developed in one dimension. In two dimensions the comprehensive analysis is made for supercharges of second order in derivatives and it is shown that the binomial superalgebra always entails the hidden dynamical symmetry induced by a central charge.
@article{TMF_1995_104_3_a6,
     author = {A. A. Andrianov and M. V. Ioffe and D. N. Nishnianidze},
     title = {Polynomial supersymmetry and dynamical symmetries in quantum mechanics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {463--478},
     year = {1995},
     volume = {104},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_104_3_a6/}
}
TY  - JOUR
AU  - A. A. Andrianov
AU  - M. V. Ioffe
AU  - D. N. Nishnianidze
TI  - Polynomial supersymmetry and dynamical symmetries in quantum mechanics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 463
EP  - 478
VL  - 104
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_104_3_a6/
LA  - ru
ID  - TMF_1995_104_3_a6
ER  - 
%0 Journal Article
%A A. A. Andrianov
%A M. V. Ioffe
%A D. N. Nishnianidze
%T Polynomial supersymmetry and dynamical symmetries in quantum mechanics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 463-478
%V 104
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1995_104_3_a6/
%G ru
%F TMF_1995_104_3_a6
A. A. Andrianov; M. V. Ioffe; D. N. Nishnianidze. Polynomial supersymmetry and dynamical symmetries in quantum mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 3, pp. 463-478. http://geodesic.mathdoc.fr/item/TMF_1995_104_3_a6/

[1] Gendenshtein L. E., Krive I. V., UFN, 146 (1985), 553 | DOI | MR

[2] Lahiri A., Roy P. K., Bagghi B., Int. J. Mod. Phys. A, 5 (1990), 1383 | DOI | MR

[3] Moutard Th. F., C. R. Acad. Sci. Paris, 80 (1875), 729; J. de L'Ecole Politech. Chier, 45 (1879), 1; Darboux G., C. R. Acad. Sci. Paris, 92 (1882), 1456

[4] Infeld L., Hull T. E., Rev. Mod. Phys., 23 (1951), 21 | DOI | MR | Zbl

[5] Witten E., Nucl. Phys. B, 188 (1981), 513 ; 202 (1982), 253 | DOI | MR | Zbl | DOI | MR

[6] Andrianov A. A., Ioffe M. V., Spiridonov V. P., Phys. Lett. A, 174 (1993), 273 | DOI | MR

[7] Andrianov A. A., Cannata F., Dedonder J.- P., Ioffe M. V., Internat. J. Modern Phys. A, 10:18 (1995), 2683–2702 ; Preprint SPBU–IP–94–03, 1994 | DOI | MR | Zbl

[8] Andrianov A. A., Borisov N. V., Ioffe M. V., TMF, 61:2 (1984), 183–198 | MR

[9] Andrianov A. A., Borisov N. V., Ioffe M. V., Eides M. N., TMF, 61:1 (1984), 17–28 ; Phys. Lett. A, 109 (1985), 143 | MR | DOI | MR

[10] Miller W., Jr., Symmetry and Separation of Variables, Addison-Wesley Publishing Company, London, 1977 | MR | Zbl

[11] Andrianov A. A., Ioffe M. V., Phys. Lett. B, 205 (1988), 507 | DOI | MR

[12] Andrianov A. A., Ioffe M. V., Tssyu-Chzhun-Pin, Vestn. LGU, 1988, no. 4, 3 | MR | Zbl