The solution by Einstein–Infeld–Hoffmann method the problem of colour particles motion and gauge field dynamics
Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 3, pp. 451-462 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Einstein–Infeld–Hoffmann (EIH) method is used to solve the problem of self-consistent description of the dynamics of the gravitational field and Yang–Mills field in the presence of particles that generate these fields and are singular points of them. The results that follow from the Drechsler–Rosenblum equations in the lowest orders of the approximation are reproduced. It is shown that a separation of the orders of smallness compatible with these equations leads either to the disappearance of interaction between the particles or to noncompactness of the gauge group. The possible consequences of a different separation of orders allowed by the EIH-method but not compatible with the given equations are discussed.
@article{TMF_1995_104_3_a5,
     author = {M. V. Gorbatenko},
     title = {The solution by {Einstein{\textendash}Infeld{\textendash}Hoffmann} method the problem of colour particles motion and gauge field dynamics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {451--462},
     year = {1995},
     volume = {104},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_104_3_a5/}
}
TY  - JOUR
AU  - M. V. Gorbatenko
TI  - The solution by Einstein–Infeld–Hoffmann method the problem of colour particles motion and gauge field dynamics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 451
EP  - 462
VL  - 104
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_104_3_a5/
LA  - ru
ID  - TMF_1995_104_3_a5
ER  - 
%0 Journal Article
%A M. V. Gorbatenko
%T The solution by Einstein–Infeld–Hoffmann method the problem of colour particles motion and gauge field dynamics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 451-462
%V 104
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1995_104_3_a5/
%G ru
%F TMF_1995_104_3_a5
M. V. Gorbatenko. The solution by Einstein–Infeld–Hoffmann method the problem of colour particles motion and gauge field dynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 3, pp. 451-462. http://geodesic.mathdoc.fr/item/TMF_1995_104_3_a5/

[1] Kosyakov B. P., TMF, 99:1 (1994), 36–53 | MR | Zbl

[2] Chechin L. M., TMF, 99:1 (1994), 54–74 | MR | Zbl

[3] Drechsler W., Rozenblum A., Phys. Lett., 106 (1981), 81–92 | DOI | MR

[4] Wong S. K., Nuovo Cimento A, 65:4 (1970), 689–694 | DOI

[5] Einstein A., Infeld L., Hoffmann B., Ann. Math., 39 (1938), 65–100 | DOI | MR

[6] Einstein A., Infeld L., Canad. J. Math., 1 (1949), 209–241 | DOI | MR | Zbl

[7] Mizner Ch., Torn K., Uiler Dzh., Gravitatsiya, T. 1, 2, 3, Mir, M., 1977 | MR

[8] Landau L. D., Lifshits E. M., Teoriya polya, Nauka, M., 1988 | MR

[9] Infeld L., Canad. J. Math., 5 (1953), 17 | DOI | MR | Zbl

[10] Ryabushko A. P., Dvizhenie tel v obschei teorii otnositelnosti, Vysheishaya shkola, Minsk, 1979 | MR | Zbl

[11] Slavnov A. A., Faddeev L. D., Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1978 | MR

[12] Prokhorov L. V., EChAYa, 25:3 (1994), 559–602 | MR

[13] Gorbatenko M. V., Vopr. atomn. nauki i tekhn., ser. Teor. i prikl. fiz., 1 (1993), 17–21

[14] E. Shmuttsera (ed.), Tochnye resheniya uravnenii Einshteina, Energoatomizdat, M., 1982 | MR

[15] Alekseev A. I., Arbuzov B. A., TMF, 65 (1985), 202–211 | MR

[16] Anselmino M., Predazzi E., Ekelin S., Fredriksson S., Lichtenberg D. B., Rev. Mod. Phys., 65:4 (1993), 1199–1233 | DOI