Weyl connection, non-Abelian gauge field, and torsion
Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 3, pp. 429-434

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the congruent transport introduced by Weyl in 1921 determines a non-Abelian gauge field. The simplest gaugeinvariant equations of this field are proposed. Its connection with torsion is discussed.
@article{TMF_1995_104_3_a3,
     author = {B. M. Barbashov and A. B. Pestov},
     title = {Weyl connection, {non-Abelian} gauge field, and torsion},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {429--434},
     publisher = {mathdoc},
     volume = {104},
     number = {3},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_104_3_a3/}
}
TY  - JOUR
AU  - B. M. Barbashov
AU  - A. B. Pestov
TI  - Weyl connection, non-Abelian gauge field, and torsion
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 429
EP  - 434
VL  - 104
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_104_3_a3/
LA  - ru
ID  - TMF_1995_104_3_a3
ER  - 
%0 Journal Article
%A B. M. Barbashov
%A A. B. Pestov
%T Weyl connection, non-Abelian gauge field, and torsion
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 429-434
%V 104
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1995_104_3_a3/
%G ru
%F TMF_1995_104_3_a3
B. M. Barbashov; A. B. Pestov. Weyl connection, non-Abelian gauge field, and torsion. Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 3, pp. 429-434. http://geodesic.mathdoc.fr/item/TMF_1995_104_3_a3/