Complex Whitham deformations in the problems with “integrable instability”
Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 3, pp. 393-419 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The focusing nonlinear Schrödinger equation with finite-density boundary conditions as $|x|\!\to \!\infty$ is considered. The asymptotic behavior of the solution as $t\!\to \!\infty$ is investigated by means of the complex theory of $\zeta$ deformations of Whitham.
@article{TMF_1995_104_3_a1,
     author = {R. F. Bikbaev},
     title = {Complex {Whitham} deformations in the problems with {\textquotedblleft}integrable instability{\textquotedblright}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {393--419},
     year = {1995},
     volume = {104},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_104_3_a1/}
}
TY  - JOUR
AU  - R. F. Bikbaev
TI  - Complex Whitham deformations in the problems with “integrable instability”
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 393
EP  - 419
VL  - 104
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_104_3_a1/
LA  - ru
ID  - TMF_1995_104_3_a1
ER  - 
%0 Journal Article
%A R. F. Bikbaev
%T Complex Whitham deformations in the problems with “integrable instability”
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 393-419
%V 104
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1995_104_3_a1/
%G ru
%F TMF_1995_104_3_a1
R. F. Bikbaev. Complex Whitham deformations in the problems with “integrable instability”. Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 3, pp. 393-419. http://geodesic.mathdoc.fr/item/TMF_1995_104_3_a1/

[1] Bikbaev R. F, Zap. nauchn. semin. LOMI, 179, 1989, 23–31 ; 199, 1992, 25–36 | MR

[2] El' G. A., Gurevich A. V., et all., Phys. Lett. A, 177 (1993), 357–361 ; Гуревич А. В., Питаевский Л. П., ЖЭТФ, 65 (1973), 590–604 | DOI

[3] Bikbaev R. F., Integrirovanie solitonnykh uravnenii s integriruemymi granichnymi usloviyami, Dissert. dokt. fiz.-mat. nauk, S.-Peterburg, 1991

[4] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977 | MR

[5] Bikbaev R. F., Kudashev V. R., Pisma v ZhETF, 59:11 (1994), 741–745

[6] Bikbaev R. F., Zap. nauchn. semin. LOMI, 199, 1992, 37 ; Journal Nonlinear Sci., 5 (1995), 1–10 | Zbl | DOI | MR

[7] Bikbaev R. F., Zap. nauchn. semin. LOMI, 215, 1994, 65–76 | MR

[8] Bikbaev R. F., Kuksin S. B., Algebra i analiz, 4:3 (1992), 42–78 | MR

[9] Karpman V. I., Krushkal E. M., ZhETF, 55 (1968), 530–538

[10] Kotlyarov V. P., Dissertatsiya dokt. f.-m. nauk, Fiz.-tekh. inst. niz.temp., Kharkov, 1992

[11] Zakharov V. E., Shabat A. B., ZhETF, 61 (1971), 118–134

[12] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl

[13] McLaughlin D., Important developments in Soliton theory 1980–1990, eds. T. Fokas and V. E. Zakharov, Springer, Berlin, 1993 ; Ablowitz M., ibid. | MR

[14] Bikbaev R. F., Bobenko A. I., Its A. R., Uravnenie Landau–Lifshitsa. Teoriya tochnykh reshenii, Preprint donetskogo fiz.-tekh. instituta. Don-FTI-84-6 (81), 1984 | MR

[15] Bikbaev R. F., Sharipov R. A., TMF, 78 (1989), 345–356 | MR | Zbl

[16] Bikbaev R. F., Algebra i analiz, 2:3 (1990), 131–143 | MR

[17] Krichever I. M., Sov. Sci. Rev. C, 9 (1991), 1–101 ; Кричевер И. М., Функц. анализ и его прилож., 22:3 (1988), 37–52 | DOI | MR | Zbl

[18] Bikbaev R. F., Novokshenov V. Yu., Asimptoticheskie metody resheniya uravnenii matematicheskoi fiziki, Ufa, 1989, 9–27 | MR

[19] Novokshenov V. Ju, Preprint SFB 288, No 65, 1993; Asymp. Analysis, 1995 (to appear)

[20] Flaschka H., Forest G., Mclaughlin D., Comm. Pure and Appl. Math., 33 (1980), 739–784 | DOI | MR | Zbl

[21] Bikbaev R. F., Kuksin S. B., Lett. Math. Phys., 28 (1993), 115–122 | DOI | MR | Zbl

[22] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. 4, Nauka, M., 1967 | MR

[23] Bikbaev R. F., Kudashev V. R., Phys. Lett. A, 191 (1994), 454 ; 190, 255 | DOI | MR | DOI | Zbl

[24] Kamenskii V., Manakov S. V., Pisma v ZhETF, 45:10, 499–502

[25] Bikbaev R. F., TMF, 80:3 (1989), 470–474 | MR

[26] Bikbaev R. F., TMF, 95:1 (1993), 96–100 | MR | Zbl