Quantum solitons with cylindrical symmetry
Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 2, pp. 248-259 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Soliton solutions with cylindrical symmetry are investigated within the nonlinear $\sigma$-model disregarding the Skyrme-stabilization term. The solitons are stabilized by quantization of the collective breathing mode and collapse in the $\hbar \rightarrow 0$ limit. It is shown that for such stabilization mechanism the model, apart from the solitons with integer topological number ${\mathbf B}$, admits the solitons with half-odd ${\mathbf B}$. The solitons with integer ${\mathbf B}$ have standard spin-isospin classification, but the ${\mathbf B}={\displaystyle {1\over 2}}$ solitons are shown to be characterized by spin, isospin and some additional “momentum”.
@article{TMF_1995_104_2_a3,
     author = {N. Chepilko and A. Kobushkin and A. Syamtomov},
     title = {Quantum solitons with cylindrical symmetry},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {248--259},
     year = {1995},
     volume = {104},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_104_2_a3/}
}
TY  - JOUR
AU  - N. Chepilko
AU  - A. Kobushkin
AU  - A. Syamtomov
TI  - Quantum solitons with cylindrical symmetry
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 248
EP  - 259
VL  - 104
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_104_2_a3/
LA  - en
ID  - TMF_1995_104_2_a3
ER  - 
%0 Journal Article
%A N. Chepilko
%A A. Kobushkin
%A A. Syamtomov
%T Quantum solitons with cylindrical symmetry
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 248-259
%V 104
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1995_104_2_a3/
%G en
%F TMF_1995_104_2_a3
N. Chepilko; A. Kobushkin; A. Syamtomov. Quantum solitons with cylindrical symmetry. Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 2, pp. 248-259. http://geodesic.mathdoc.fr/item/TMF_1995_104_2_a3/

[1] Chepilko N. M., Fujii K.,Kobushkin A. P., Preprint ITP-89-26E, Institute for Theoretical Physics, Kiev, 1989

[2] Chepilko N. M., Fujii K., Kobushkin A. P., Phys. Rev. D, 44 (1991), 3249 | DOI | MR

[3] Skyrme T. H. R., Proc. R. Soc. A, 260 (1961), 127 | DOI | MR | Zbl

[4] Kopeliovich V. B., Shtern B. E., Zh. Eksp. Teor. Fiz., 45 (1987), 165 | MR

[5] Braaten E., Carson L., Phys. Rev. D, 38 (1988), 3525 | DOI

[6] Jain P., Schechter J., Sorkin R., Phys. Rev. D, 39 (1989), 998 | DOI

[7] Chepilko N. M., Fujii K., Kobushkin A. P., Phys Rev. D, 43 (1991), 2391 | DOI | MR

[8] Nikolaev V. A., Tkachev O., Particles Nuclei, 21 (1990), 1499

[9] Derrick G. H., J. Math. Phys., 5 (1964), 1252 | DOI | MR

[10] Sugano R., Progr. Theor. Phys., 46 (1971), 297 | DOI

[11] Davydov A. S., Quantum Mechanics, Pergamon Press, N.Y. etc., 1976 | MR

[12] Dubrovin B. A., Novikov S. P., Fomenko A. T., Modern geometry, Nauka, Moscow, 1986 (in Russian) | MR