Confluence of Fuchsian second-order differential equations
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 2, pp. 233-247
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Ordinary linear homogeneous second-order differential equations with polynomial coefficients including one in front of the second derivative are studied. Fundamental definitions for these equations: of $s$-rank of the singularity (different from Poincaré rank), of $s$-multisymbol of the equation and of $s$-homotopic transformations are proposed. Generalization of Fuchs\rq theorem for confluent Fuchsian equations is proved. The tree structure of types of equations is exposed and the generalized confluence theorem is proved.
			
            
            
            
          
        
      @article{TMF_1995_104_2_a2,
     author = {A. Seeger and W. Lay and S. Yu. Slavyanov},
     title = {Confluence of {Fuchsian} second-order differential equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {233--247},
     publisher = {mathdoc},
     volume = {104},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_104_2_a2/}
}
                      
                      
                    TY - JOUR AU - A. Seeger AU - W. Lay AU - S. Yu. Slavyanov TI - Confluence of Fuchsian second-order differential equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1995 SP - 233 EP - 247 VL - 104 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1995_104_2_a2/ LA - ru ID - TMF_1995_104_2_a2 ER -
A. Seeger; W. Lay; S. Yu. Slavyanov. Confluence of Fuchsian second-order differential equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 2, pp. 233-247. http://geodesic.mathdoc.fr/item/TMF_1995_104_2_a2/
