Darboux transformation, factorization, supersymmetry in one-dimensional quantum mechanics
Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 2, pp. 356-367 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce an $N$-order Darboux transformation operator as a particular case of general transformation operators. It is shown that this operator can always be represented as a product of $N$ first-order Darboux transformation operators. The relationship between this transformation and the factorization method is investigated. Supercharge operators are introduced. They are differential operators of order $N$. It is shown that these operators and super-Hamiltonian form a superalgebra of order $N$. For $N=2$, we have a quadratic superalgebra analogous to the Sklyanin quadratic algebras. The relationship between the transformation introduced and the inverse scattering problem in quantum mechanics is established. An elementary $N$-parametric potential that has exactly $N$ predetermined discrete spectrum levels is constructed. The paper concludes with some examples of new exactly soluble potentials.
@article{TMF_1995_104_2_a12,
     author = {V. G. Bagrov and B. F. Samsonov},
     title = {Darboux transformation, factorization, supersymmetry in one-dimensional quantum mechanics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {356--367},
     year = {1995},
     volume = {104},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_104_2_a12/}
}
TY  - JOUR
AU  - V. G. Bagrov
AU  - B. F. Samsonov
TI  - Darboux transformation, factorization, supersymmetry in one-dimensional quantum mechanics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 356
EP  - 367
VL  - 104
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_104_2_a12/
LA  - ru
ID  - TMF_1995_104_2_a12
ER  - 
%0 Journal Article
%A V. G. Bagrov
%A B. F. Samsonov
%T Darboux transformation, factorization, supersymmetry in one-dimensional quantum mechanics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 356-367
%V 104
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1995_104_2_a12/
%G ru
%F TMF_1995_104_2_a12
V. G. Bagrov; B. F. Samsonov. Darboux transformation, factorization, supersymmetry in one-dimensional quantum mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 2, pp. 356-367. http://geodesic.mathdoc.fr/item/TMF_1995_104_2_a12/

[1] Darboux G., Lecons sur la theorie generale des surfaces et les application geometriques du calcul infinitesimal, Deuxiem partie, Gauthier–Villars et fils, Paris, 1889 | MR | Zbl

[2] Infeld T. E., Hull H., Rev. Mod. Phys., 53 (1951), 21 | DOI | MR

[3] Hull H., Infeld T. E., Phys. Rev., 74 (1948), 905 | DOI | Zbl

[4] Mielnik B., J. Math. Phys., 25:12 (1984), 3387–3389 | DOI | MR | Zbl

[5] Alves N. A., Filho E. D., J. Phys. A: Math. Gen., 21:15 (1988), 3215–3225 | DOI | MR

[6] Faddeev L. D., UMN, 105:4(88) (1959), 57–119 | MR

[7] Levitan B. M., Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR

[8] Agranovich Z. S., Marchenko V. A., Obratnaya zadacha teorii rasseyaniya, Izd-vo KhGU, Kharkov, 1969

[9] Abraham P. B., Moses H. E., Phys. Rev. A, 22:4 (1980), 1333–1340 | DOI | MR

[10] Pursey D. L., Phys. Rev. D, 33:4 (1986), 1048–1055 | DOI | MR

[11] Luban M., Pursey D. L., Phys. Rev. D, 33:2 (1986), 431–436 | DOI | MR

[12] Bagrov V. G., Shapovalov A. V., Shirokov I. V., TMF, 87:3, 426–433 | MR | Zbl

[13] Bagrov V. G., Shapovalov A. V., Shirokov I. V., Phys. Lett. A, 147:7 (1990), 348–350 | DOI | MR

[14] Witten E., Nucl. Phys., B185 (1981), 513 | DOI | MR | Zbl

[15] Bagrov V. G., Vshivtsev A. S., Izv. vuzov, fizika, 1988, no. 7, 19

[16] Delsart J., J. Math. Pures et Appl., 17 (1938), 213–230

[17] Veselov A. P., Shabat A. B., Funkts. analiz i ego prilozh., 27:2 (1993), 1–21 | MR | Zbl

[18] Sklyanin E. K., Funkts. analiz i ego prilozh., 16 (1982), 27 ; 17 (1983), 34 | MR | Zbl | MR | Zbl

[19] Granovskii Ya. I., Zhedanov A. S., Lutsenko I. M., ZhETF, 99 (1991), 369 | MR

[20] Krein M. G., DAN SSSR, 113:5 (1957), 970–973 | MR | Zbl

[21] Berezovskii V. P., Pashnev A. I., TMF, 70 (1987), 146

[22] Dubov Yu. S., Eleonskii V. M., Kulagin N. E., ZhETF, 102 (1992), 814 | MR

[23] Natanzon G. A., Vestnik LGU, 1971, no. 10, 22 ; ТМФ, 38 (1979), 219 | MR | MR | Zbl