Noncommutative integration of linear differential equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 2, pp. 195-213

Voir la notice de l'article provenant de la source Math-Net.Ru

A method of noncommutative integration of linear partial differential equations that is analogous to noncommutative integration of finite-dimensional Hamiltonian systems is proposed. The method is based on the concept, introduced in the paper, of a $\lambda$ representation of Lie algebras. The method can be applied to the integration of the Klein–Gordon equation in Riemannian spaces of non-Stäckel type (i. e., in spaces that do not admit complete separation of the variables).
@article{TMF_1995_104_2_a0,
     author = {A. V. Shapovalov and I. V. Shirokov},
     title = {Noncommutative integration of linear differential equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {195--213},
     publisher = {mathdoc},
     volume = {104},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_104_2_a0/}
}
TY  - JOUR
AU  - A. V. Shapovalov
AU  - I. V. Shirokov
TI  - Noncommutative integration of linear differential equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 195
EP  - 213
VL  - 104
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_104_2_a0/
LA  - ru
ID  - TMF_1995_104_2_a0
ER  - 
%0 Journal Article
%A A. V. Shapovalov
%A I. V. Shirokov
%T Noncommutative integration of linear differential equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 195-213
%V 104
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1995_104_2_a0/
%G ru
%F TMF_1995_104_2_a0
A. V. Shapovalov; I. V. Shirokov. Noncommutative integration of linear differential equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 2, pp. 195-213. http://geodesic.mathdoc.fr/item/TMF_1995_104_2_a0/