Noncommutative integration of linear differential equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 2, pp. 195-213
Voir la notice de l'article provenant de la source Math-Net.Ru
A method of noncommutative integration of linear partial differential equations that is analogous to noncommutative integration of finite-dimensional Hamiltonian systems is proposed. The method is based on the concept, introduced in the paper, of a $\lambda$ representation of Lie algebras. The method can be applied to the integration of the Klein–Gordon equation in Riemannian spaces of non-Stäckel type (i. e., in spaces that do not admit complete separation of the variables).
@article{TMF_1995_104_2_a0,
author = {A. V. Shapovalov and I. V. Shirokov},
title = {Noncommutative integration of linear differential equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {195--213},
publisher = {mathdoc},
volume = {104},
number = {2},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1995_104_2_a0/}
}
TY - JOUR AU - A. V. Shapovalov AU - I. V. Shirokov TI - Noncommutative integration of linear differential equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1995 SP - 195 EP - 213 VL - 104 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1995_104_2_a0/ LA - ru ID - TMF_1995_104_2_a0 ER -
A. V. Shapovalov; I. V. Shirokov. Noncommutative integration of linear differential equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 2, pp. 195-213. http://geodesic.mathdoc.fr/item/TMF_1995_104_2_a0/