Noncommutative integration of linear differential equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 2, pp. 195-213 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method of noncommutative integration of linear partial differential equations that is analogous to noncommutative integration of finite-dimensional Hamiltonian systems is proposed. The method is based on the concept, introduced in the paper, of a $\lambda$ representation of Lie algebras. The method can be applied to the integration of the Klein–Gordon equation in Riemannian spaces of non-Stäckel type (i. e., in spaces that do not admit complete separation of the variables).
@article{TMF_1995_104_2_a0,
     author = {A. V. Shapovalov and I. V. Shirokov},
     title = {Noncommutative integration of linear differential equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {195--213},
     year = {1995},
     volume = {104},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_104_2_a0/}
}
TY  - JOUR
AU  - A. V. Shapovalov
AU  - I. V. Shirokov
TI  - Noncommutative integration of linear differential equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 195
EP  - 213
VL  - 104
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_104_2_a0/
LA  - ru
ID  - TMF_1995_104_2_a0
ER  - 
%0 Journal Article
%A A. V. Shapovalov
%A I. V. Shirokov
%T Noncommutative integration of linear differential equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 195-213
%V 104
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1995_104_2_a0/
%G ru
%F TMF_1995_104_2_a0
A. V. Shapovalov; I. V. Shirokov. Noncommutative integration of linear differential equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 2, pp. 195-213. http://geodesic.mathdoc.fr/item/TMF_1995_104_2_a0/

[1] Shapovalov A. V., Shirokov I. V., Izv. vuzov, Fizika, 1991, no. 4, 95–100 | MR

[2] Shapovalov A. V., Shirokov I. V., Izv. vuzov, Fizika, 1991, no. 5, 33–38 | MR

[3] Havas P., J. Math. Phys., 16:7 (1975), 1461–1468 | DOI | MR | Zbl

[4] Miller U., Simmetriya i razdelenie peremennykh, Mir, M., 1981 | MR

[5] Kalnins E. G., Separation of variables for Riemannian spaces of constant curvature, Longman, John Willey, New York, 1986 | MR | Zbl

[6] Benenti S., Lect. Notes Math., 836, 1980, 512–538 | DOI | MR | Zbl

[7] Shapovalov V. N., Izv. vuzov, Fizika, 1978, no. 5, 116–122 ; no. 6, 7–10 | MR | MR

[8] Shapovalov V. N., Diff. uravneniya, 16:10 (1980), 1864–1874 | MR | Zbl

[9] Bagrov V. G., Gitman D. M., Exact solutions of relativistic wave equations, Kluwer Academic Press, Dordrecht, Boston, London, 1990 | MR | Zbl

[10] Bagrov V. G., Shapovalov A. V., Shirokov I. V., TMF, 87:3 (1991), 426–433 | MR | Zbl

[11] Mischenko A. S., Fomenko A. T., Funkts. analiz i ego prilozh., 12 (1978), 46–56 | MR

[12] Fomenko A. T., Simplekticheskaya geometriya. Metody i prilozheniya, Izd-vo MGU, M., 1988 | MR | Zbl

[13] Arnold V. I., Kozlov V. V., Neishtadt A. I., “Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki”, Itogi nauki i tekhniki, ser. sovr. probl. matem. Fundam. napr., 3, VINITI, M., 1985, 5–290 | MR

[14] Bagrov V. G., Samsonov B. F., Shapovalov A. V., Shirokov I. V., TMF, 83:1 (1990), 14–22 | MR | Zbl

[15] Petrov A. Z., Prostranstva Einshteina, Nauka, M., 1961 | MR

[16] Fedoseev V. G., Shapovalov A. V., Shirokov I. V., Izv. vuzov, Fizika, 1991, no. 9, 43–46 | MR

[17] Sklyanin E. K., Funkts. analiz i ego prilozh., 16:4 (1982), 27–34 | MR | Zbl

[18] Granovskii Ya. I., Zhedanov A. S., Lutsenko I. M., TMF, 91:3 (1992), 396–410 | MR

[19] Lutsenko I. M., TMF, 93:1 (1992), 3–16 | MR | Zbl