Nonstandard KP evolution and the quantum $\tau$-function
Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 1, pp. 129-143 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One possible way to fix partly a “canonical definition” of $\tau$-functions beyond the conventional KP/Toda framework could be to postulate that evolution operators are group elements. We discuss implications of this postulate for the first non-trivial case: fundamental representations of quantum groups $SL_q(N)$. It appears that the most suited (simple) for quantum deformation framework is some non-standard formulation of KP/Toda systems. It turns out that the postulate needs to be slightly modified to take into account that no “nilpotent subgroups” exist in $SL_q(N)$ for $q\neq 1$. This has some definite and simple implications for $q$-determinant-like representations of quantum $\tau$-functions.
@article{TMF_1995_104_1_a9,
     author = {S. M. Kharchev and A. D. Mironov and A. Yu. Morozov},
     title = {Nonstandard {KP} evolution and the quantum $\tau$-function},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {129--143},
     year = {1995},
     volume = {104},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a9/}
}
TY  - JOUR
AU  - S. M. Kharchev
AU  - A. D. Mironov
AU  - A. Yu. Morozov
TI  - Nonstandard KP evolution and the quantum $\tau$-function
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 129
EP  - 143
VL  - 104
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a9/
LA  - en
ID  - TMF_1995_104_1_a9
ER  - 
%0 Journal Article
%A S. M. Kharchev
%A A. D. Mironov
%A A. Yu. Morozov
%T Nonstandard KP evolution and the quantum $\tau$-function
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 129-143
%V 104
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a9/
%G en
%F TMF_1995_104_1_a9
S. M. Kharchev; A. D. Mironov; A. Yu. Morozov. Nonstandard KP evolution and the quantum $\tau$-function. Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 1, pp. 129-143. http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a9/

[1] A. Gerasimov, S. Khoroshkin, D. Lebedev, A. Mironov and A. Morozov, Generalized Hirota equations and representation theory. The case of $SL(2)$ and $SL_q(2)$, preprint ITEP-M2y94, FIAN/TD-5/94, NBI-HE-94-27, hep-th/9405011 | MR

[2] A. Morozov and L. Vinet, Free-field representation of group element for simple quantum groups, Preprint ITEP-M3/94, CRM-2202 | MR

[3] A. Mironov, Quantum Deformations of $r$-functions, Bilinear Identities and Representation Theory, Preprint FIAN/TD-12/94 | MR

[4] N.Yu. Reshetikhin, L.A. Takhtajan and L.D. Faddeev, “Quantization of Lie groups and Lie algebras”, Algebra and Analysis, 1:1 (1989), 178 | MR

[5] C. Fronsdal and A. Galindo, The Universal T-Matrix, Preprint UCLA/93/TEP/2, January 1993 | MR

[6] B. Jurco and P. Stovicek, Coherent States for Quantum Compact Groups, Preprint CERNTH.7201/94 | MR

[7] A. Mironov, A. Morozov and L. Vinet, On a $c$-number quantum $r$-function, preprint FIAN/TD-22/93, ITEP-M8/93, CRM-1934

[8] E. Date, M. Jimbo, M. Kashiwara and T. Miwa, “Transformation groups for soliton equations”, Non-linear integrable systems - classical theory and quantum theory (RIMS Symp.), World Scientific, Singapore, 1983 | MR

[9] M. Sato, RIMS Kokyuroku, 439 (1981), 30 ; Y. Ohta, J. Satsuma, D. Takahashi and T. Tokihiro, Progr.Theor.Phys. Suppl., 94 (1988), 210 | Zbl | DOI | MR

[10] I.G. Macdonald, Symmetric functions and Hall polynomials, Clarendon, Oxford, 1979 | MR | Zbl

[11] S. Kharchev et al., Preprint FIAN/TD-1/95, ITEP-M3/95