On coset reductions of KP hierarchies
Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 1, pp. 123-128 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this talk the class of multi-fields reductions of the KP and super-KP hierarchies (leading to non-purely differential Lax operators) is revisited from the point of view of coset construction. This means in particular that all the Hamiltonian densities of the infinite tower belong to a coset algebra of a given Poisson brackets structure.
@article{TMF_1995_104_1_a8,
     author = {F. Toppan},
     title = {On coset reductions of {KP} hierarchies},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {123--128},
     year = {1995},
     volume = {104},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a8/}
}
TY  - JOUR
AU  - F. Toppan
TI  - On coset reductions of KP hierarchies
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 123
EP  - 128
VL  - 104
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a8/
LA  - en
ID  - TMF_1995_104_1_a8
ER  - 
%0 Journal Article
%A F. Toppan
%T On coset reductions of KP hierarchies
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 123-128
%V 104
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a8/
%G en
%F TMF_1995_104_1_a8
F. Toppan. On coset reductions of KP hierarchies. Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 1, pp. 123-128. http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a8/

[1] C.S. Gardner, J.M. Green, M.D. Kruskal and R.M. Miura, Phys. Rev. Lett., 19 (1967), 1095 | DOI

[2] A. Marshakov, Int. Jou. Mod. Phys., A8:22 (1993), 3831 | DOI | MR | Zbl

[3] V. Drinfeld and V. Sokolov, Jou. Sov. Math, 30 (1984), 1975 | DOI

[4] H. Aratyn, L.A. Ferreira, J.F. Gomes and A.H. Zimerman, Nucl. Phys., B402 (1993), 85 ; Preprint UIC-HEP-TH-93-05; H. Aratyn, E. Nissimov and S. Pacheva, Phys. Lett., B314 (1993), 41 ; Preprint UICHEP-TH-94-2 | DOI | MR | Zbl | DOI | MR

[5] L. Bonora and C.S. Xiong, Phys. Lett., B285 (1992), 191 ; Phys. Lett., B317 (1993), 329 | DOI | MR | Zbl | DOI | MR | Zbl

[6] L. Bonora and C.S. Xiong, Preprint SISSA-171/93/EP

[7] F. Yu and Y.S. Wu, Phys. Rev. Lett., 68 (1992), 2996 | DOI | MR | Zbl

[8] I. Bakas and E. Kiritsis, Int. J. Mod. Phys., A7 (1992), 55 ; J.Schiff, Preprint IASSNS-HEP-92-57, hep-th/9210029 | DOI | MR | Zbl

[9] F. Toppan, Phys. Lett., B327 (1994), 249 | DOI | MR

[10] F. Toppan, Preprint Enslapp L-467/94, , Int. Jou. Mod. Phys. A (to appear) hep-th/940595

[11] L.A. Dickey, “Soliton Equations and Hamilton Systems”, Adv. Series in Math. Phys., 12, World Sc., 1991 | DOI | MR | Zbl

[12] M. Wakimoto, Comm. Math. Phys., 104 (1986), 605 | DOI | MR | Zbl

[13] A. Polyakov, Int. J. Mod. Phys., A5 (1990), 833 ; M. Bershadsky, Comm. Math. Phys., 139 (1991), 71 | DOI | MR | DOI | MR | Zbl

[14] Yu.I. Manin and A.O. Radul, Comm. Math. Phys., 98 (1985), 65 | DOI | MR | Zbl

[15] I. Bakas and D.A. Depireux, Int. Jou. Mod. Phys., A7 (1992), 1767 ; M.F. de Groot, T.J. Hollowood and J.L. Miramontes, Comm. Math. Phys., 145 (1992), 57 ; L. Feher, J. Hamad and I. Marshall, Comm. Math. Phys., 154 (1993), 181 ; L. Feher, preprint LANL-hep-th 9211094 hep-th/9211094 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl