On coset reductions of KP hierarchies
Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 1, pp. 123-128
Voir la notice de l'article provenant de la source Math-Net.Ru
In this talk the class of multi-fields reductions of the KP and super-KP hierarchies (leading to non-purely differential Lax operators) is revisited from the point of view of coset construction. This means in particular that all the Hamiltonian densities of the infinite tower belong to a coset algebra of a given Poisson brackets structure.
@article{TMF_1995_104_1_a8,
author = {F. Toppan},
title = {On coset reductions of {KP} hierarchies},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {123--128},
publisher = {mathdoc},
volume = {104},
number = {1},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a8/}
}
F. Toppan. On coset reductions of KP hierarchies. Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 1, pp. 123-128. http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a8/