Observables and critical behaviour in fermionic matrix models
Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 1, pp. 78-122 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review the properties of adjoint fermion one-, two- and generic $D$-dimensional matrix models at large-$N$. We derive and solve the complete sets of loop equations for the correlators of these models and examine the ensuing critical behaviour. The topological $\frac {1}{N}$-expansions are also constructed and we discuss the applications of these matrix models to string theory and induced gauge theories.
@article{TMF_1995_104_1_a7,
     author = {G. W. Semenoff and R. J. Szabo},
     title = {Observables and critical behaviour in fermionic matrix models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {78--122},
     year = {1995},
     volume = {104},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a7/}
}
TY  - JOUR
AU  - G. W. Semenoff
AU  - R. J. Szabo
TI  - Observables and critical behaviour in fermionic matrix models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 78
EP  - 122
VL  - 104
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a7/
LA  - en
ID  - TMF_1995_104_1_a7
ER  - 
%0 Journal Article
%A G. W. Semenoff
%A R. J. Szabo
%T Observables and critical behaviour in fermionic matrix models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 78-122
%V 104
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a7/
%G en
%F TMF_1995_104_1_a7
G. W. Semenoff; R. J. Szabo. Observables and critical behaviour in fermionic matrix models. Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 1, pp. 78-122. http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a7/

[1] J. Ambj0rn, C.F. Kristjansen and Yu. Makeenko, “Generalized Penner Models to all Genera”, Phys. Rev., D50 (1994), 5193 | MR

[2] J. Ambj0rn, L. Chekhov, C.F. Kristjansen and Yu. Makeenko, “Matrix Model Calculations Beyond the Spherical Limit”, Nucl. Phys., B404 (1993), 127 | MR

[3] D.Bessis, C. Itzykson and J.-B. Zuber, “Quantum Field Theory Techniques in Graphical Enumeration”, Adv. Appl. Math., 1 (1980), 109 | DOI | MR | Zbl

[4] E. Brezin and D.J. Gross, “The External Field Problem in the Large-$N$ Limit of QCD”, Phys. Lett., B97 (1980), 120 | DOI | MR

[5] E. Brezin, C. Itzykson, G. Parisi and J.-B. Zuber, “Planar Diagrams”, Comm. Math. Phys., 59 (1978), 35 | DOI | MR | Zbl

[6] S. Chaudhuri, H. M. Dykstra and J.D. Lykken, “The Penner Matrix Model and $c=1$ Strings”, Mod. Phys. Lett., A6 (1991), 1665 | DOI | MR | Zbl

[7] F. David, “Phases of the Large-$N$ Matrix Model and Non-perturbative Effects in 2$D$ Gravity”, Nucl. Phys., B348 (1991), 507 | DOI | MR

[8] J. Distler and C. Vafa, “A Critical Matrix Model at c = 1”, Mod. Phys. Lett., A6 (1991), 259 | DOI | MR | Zbl

[9] M.I. Dobroliubov, Yu. Makeenko and G.W. Semenoff, “Correlators of the Kazakov-Migdal Model”, Mod. Phys. Lett., A8 (1993), 2387 | DOI | MR | Zbl

[10] P. Di Francesco, P. Ginsparg and J. Zinn-Justin, “2$D$ Gravity and Random Matrices”, Phys. Rep., 1994 in press (to appear) | MR

[11] J.-M. Drouffe and J.-B. Zuber, “Strong Coupling and Mean Field Methods in Lattice Gauge Theories”, Phys. Rep., 102 (1983), 1 | DOI | MR

[12] D.J. Gross and E. Witten, “Possible Third Order Phase Transition in the Large-$N$ Lattice Gauge Theory”, Phys. Rev., D21 (1980), 446

[13] C. Itzykson and J.-B. Zuber, “The Planar Approximation”, J. Math. Phys., 21 (1980), 411 | DOI | MR | Zbl

[14] J. Jurkiewicz, “Regularization of One-matrix Models”, Phys. Lett., B245 (1990), 178 | DOI | MR | Zbl

[15] V.A. Kazakov, “The Appearence of Matter Fields from Quantum Fluctuations of 2$D$-Gravity”, Mod. Phys. Lett, A4 (1989), 2125 | DOI | MR

[16] V.A. Kazakov and A.A. Migdal, “Induced Gauge Theory at Large-$N$”, Nucl. Phys., B397 (1993), 214 | DOI | MR

[17] S. Khoklachev and Yu. Makeenko, “The Problem of Large-$N$ Phase Transition in Kazakov- Migdal Model of Induced QCD”, Phys. Lett., B297 (1992), 345 | DOI

[18] S. Khoklachev and Yu. Makeenko, “Adjoint Fermions Induce QCD”, Mod. Phys. Lett., A7 (1992), 3653 | DOI

[19] H. Kluberg-Stern, A. Morel, O. Napoly and B. Petersson, “Spontaneous Chiral Symmetry Breaking for a $U(N)$ Gauge Theory on a Lattice”, Nucl. Phys., B190 [FS3] (1981), 504 | DOI | MR

[20] I.I. Kogan, A. Morozov, G.W. Semenoff and N. Weiss, “Area Law and Continuum Limit in Induced QCD”, Nucl. Phys., B395 (1993), 547 | DOI | MR

[21] J. Kogut and L. Susskind, “Hamiltonian Formulation of Wilson's Lattice Gauge Theories”, Phys. Rev, D11 (1975), 395

[22] Yu. Makeenko, “Large-$N$ Reduction, Master Field and Loop Equations in Kazakov-Migdal Model”, Mod. Phys. Lett., A8 (1993), 209 | DOI | MR | Zbl

[23] Yu. Makeenko, “Matrix Models of Induced QCD”, Proc. XXVII International Ahrenshoop Symposium on the Theory of Elementary Particles (DESY 94-053), eds. D. Lust and G. Weigt, 1994, 85 | MR

[24] Yu. Makeenko and M.I. Polikarpov, “Phase Diagram of Mixed Lattice Gauge Theory from the Viewpoint of Large-$N$”, Nucl. Phys., B205 [FS5] (1982), 386 | DOI

[25] Yu. Makeenko and K. Zarembo, “Adjoint Fermion Matrix Models”, Nucl. Phys., B422 (1994), 237 | DOI

[26] N. Marshall, G.W. Semenoff and R.J. Szabo, Critical Behaviour of a Fermionic Random Matrix Model at Large-$N$, preprint UBC/S-94/1, University of British Columbia, 1994 | MR | Zbl

[27] A.A. Migdal, “Loop Equations and $\frac1N$-Expansions”, Phys. Rep., 102 (1983), 199 | DOI

[28] A.A. Migdal, “Mixed Model of Induced QCD”, Mod. Phys. Lett., A8 (1993), 359 | DOI | MR | Zbl

[29] A.Morozov, “Integrability and Matrix Models”, Sov. Phys. Usp., 1994 in press (to appear)

[30] R.C. Penner, “Perturbative Series and the Moduli Space of Riemann Surfaces”, J. Diff. Geom., 27 (1988), 35 | DOI | MR | Zbl

[31] K.G. Wilson, “Confinement of Quarks”, Phys. Rev., D10 (1974), 2445