On the bosonization of $L$-operators for quantum affine algebra $U_q(\mathfrak{sl}_2)$
Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 1, pp. 64-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some relations between different objects associated with quantum affine algebras are reviewed. It is shown that the Frenkel–Jing bosonization of a new realization of the quantum affine algebra $U_q(\widehat{\mathfrak{sl}}_2)$ as well as bosonization of $L$-operators for this algebra can be obtained from Zamolodchikov–Faddeev algebras defined by the quantum $R$-matrix satisfying unitarity and crossing-symmetry conditions.
@article{TMF_1995_104_1_a6,
     author = {S. Z. Pakulyak},
     title = {On the bosonization of $L$-operators for quantum affine algebra $U_q(\mathfrak{sl}_2)$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {64--77},
     year = {1995},
     volume = {104},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a6/}
}
TY  - JOUR
AU  - S. Z. Pakulyak
TI  - On the bosonization of $L$-operators for quantum affine algebra $U_q(\mathfrak{sl}_2)$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 64
EP  - 77
VL  - 104
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a6/
LA  - en
ID  - TMF_1995_104_1_a6
ER  - 
%0 Journal Article
%A S. Z. Pakulyak
%T On the bosonization of $L$-operators for quantum affine algebra $U_q(\mathfrak{sl}_2)$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 64-77
%V 104
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a6/
%G en
%F TMF_1995_104_1_a6
S. Z. Pakulyak. On the bosonization of $L$-operators for quantum affine algebra $U_q(\mathfrak{sl}_2)$. Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 1, pp. 64-77. http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a6/

[1] A.B. Zamolodchikov and Al.B. Zamolodchikov, “Factorized $S$-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models”, Ann. Phys. (N. Y.), 120 (1979), 253–291 | DOI | MR

[2] B. Davies, O. Foda, M. Jimbo, T. Miwa and A. Nakayashiki, “Diagonalization of the XXZ hamiltonian by vertex operators”, Comm. Math. Phys., 151 (1993), 89–153 | DOI | MR | Zbl

[3] M. Jimbo, K. Miki, T. Miwa and A. Nakayashiki, “Correlation functions of the XXZ model for $\Delta-1$”, Phys. Lett, A168 (1992), 256–263 | DOI | MR

[4] L.B. Frenkel and N.Yu. Reshetikhin, “Quantum affine algebras and holonomic difference equations”, Comm. Math. Phys., 146 (1992), 1–60 | DOI | MR | Zbl

[5] V.G. Drinfeld, “Quantum groups”, In Proceedings of the International Congress of Mathematicians, Berkley, 1987 | MR

[6] M. Jimbo, “A $g$-difference analogue of $U(g)$ and Yang-Baxter equation”, Lett. Math. Phys., 10 (1985), 63–69 | DOI | MR | Zbl

[7] N.Yu. Reshetikhin and M.A. Semenov-Tian-Shansky, “Central extension of quantum current groups”, Lett. Math. Phys., 19 (1990), 133–142 | DOI | MR | Zbl

[8] K. Miki, “Creation/annihilation operators and form factors of the XXZ model”, Phys. Lett., A186 (1994), 217–224 | DOI | MR | Zbl

[9] V.G. Drinfeld, “A new realization of Yangians and quantum affine algebras”, Soviet Math. Doklady, 36 (1988), 212–216 | MR | Zbl

[10] L.B. Frenkel and J. Ding, “Isomorphism of two realization of quantum algebra $U_q(\widehat{\mathfrak{gl}}(n))$”, Comm. Math. Phys., 156 (1993), 277–300 | DOI | MR | Zbl

[11] L.B. Frenkel and N.H. Jing, Vertex representations of quantum affine algebras., Proc. Nat'l. Acad. Sci. USA, 85 9373-9377, 1988 | MR

[12] S. Lukyanov, Free field representation for massive integrable models, RU-93-30, 1993 | MR

[13] H.J. de Vega and A. González-Ruiz, The highest weight property for the $SU_q(n)$ invariant spin chains, Preprint L.P.T.H.E., 1994 | MR

[14] S.-J. Kang, M. Kashiwara, K. Misra, T. Miwa, T. Nakashima and A. Nakayashiki, “Affine crystals and vertex models”, Inter. J. Modern Phys., A7(Suppl. 1A) (1992), 449–484 | DOI | MR | Zbl

[15] M. Idzumi, K. Iohara, M. Jimbo, T. Miwa, T. Nakashima and T. Tokihiro, “Quantum affine symmetry in vertex models”, Intern. J. Modern Phys., A8 (1993), 1479–1511 | DOI | MR

[16] A. Matsuo, “A $q$-deformation of Wakimoto modules, primary fields and screening operators”, Comm. Math. Phys., 160 (1994), 33–48 | DOI | MR | Zbl

[17] J. Shiraishi, “Free boson representation of $U_q(\widehat{\mathfrak{sl}}_2)$”, Phys. Lett, A171 (1992), 243–248 | DOI | MR

[18] H. Konno, BRST cohomology in quantum affine algebra $U_q(\widehat{\mathfrak{sl}}_2)$, RIMS-927, 1993

[19] E. Date and M. Okado, “Calculation of excitation spectra of the spin models related with the vector representation of the quantized affine algebra of type $A_n^{(1)}$”, Intern. J. Modern Phys., A9 (1994), 399–417 | DOI | MR

[20] Y. Koyama, “Staggered polarization of vertex models with $U_q(\widehat{\mathfrak{sl}_n})$-symmetry”, Comm. Math. Phys., 164 (1993), 277–291 | DOI | MR

[21] O. Foda, K. Iohara, M. Jimbo, R. Kedem, T. Miwa and H. Yang, An eliptic quantum algebra for $\widehat{\mathfrak{sl}_2}$, RIMS-974, 1994 | MR

[22] O. Foda, K. Iohara, M. Jimbo, R. Kedem, T. Miwa and H. Yang, Notes on highest weight modules ofthe eliptic algebra $A_{q,p}(\widehat{\mathfrak{sl}}_2)$, RIMS-979, 1994 | MR