On the bosonization of $L$-operators for quantum affine algebra $U_q(\mathfrak{sl}_2)$
Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 1, pp. 64-77
Voir la notice de l'article provenant de la source Math-Net.Ru
Some relations between different objects associated with quantum affine algebras are reviewed. It is shown that the Frenkel–Jing bosonization of a new realization of the quantum affine algebra $U_q(\widehat{\mathfrak{sl}}_2)$ as well as bosonization of $L$-operators for this algebra can be obtained from Zamolodchikov–Faddeev algebras defined by the quantum $R$-matrix satisfying unitarity and crossing-symmetry conditions.
@article{TMF_1995_104_1_a6,
author = {S. Z. Pakulyak},
title = {On the bosonization of $L$-operators for quantum affine algebra $U_q(\mathfrak{sl}_2)$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {64--77},
publisher = {mathdoc},
volume = {104},
number = {1},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a6/}
}
TY - JOUR
AU - S. Z. Pakulyak
TI - On the bosonization of $L$-operators for quantum affine algebra $U_q(\mathfrak{sl}_2)$
JO - Teoretičeskaâ i matematičeskaâ fizika
PY - 1995
SP - 64
EP - 77
VL - 104
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a6/
LA - en
ID - TMF_1995_104_1_a6
ER -
S. Z. Pakulyak. On the bosonization of $L$-operators for quantum affine algebra $U_q(\mathfrak{sl}_2)$. Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 1, pp. 64-77. http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a6/