The $[n_1,n_2,\dots,n_s]$-th reduced KP hierarchy and $W_{1+\infty}$ constraints
Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 1, pp. 32-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

To every partition $n=n_1+n_2+\dots+n_s$ one can associate a vertex operator realization of the Lie algebras $a_{\infty}$ and $\hat{gl}_n$. Using this construction we obtain reductions of the $s$-component KP hierarchy, reductions which are related to these partitions. In this way we obtain matrix KdV type equations. We show that the following two constraints on a KP $\tau$–function are equivalent (1) $\tau$ is a $\tau$–function of the $[n_1,n_2,\dots ,n_s]$–th reduced KP hierarchy which satisfies string equation, $L_{-1}\tau =0$, (2) $\tau$ satisfies the vacuum constraints of the $W_{1+\infty}$ algebra.
@article{TMF_1995_104_1_a3,
     author = {J. van de Leur},
     title = {The $[n_1,n_2,\dots,n_s]$-th reduced {KP} hierarchy and $W_{1+\infty}$ constraints},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {32--42},
     year = {1995},
     volume = {104},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a3/}
}
TY  - JOUR
AU  - J. van de Leur
TI  - The $[n_1,n_2,\dots,n_s]$-th reduced KP hierarchy and $W_{1+\infty}$ constraints
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 32
EP  - 42
VL  - 104
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a3/
LA  - en
ID  - TMF_1995_104_1_a3
ER  - 
%0 Journal Article
%A J. van de Leur
%T The $[n_1,n_2,\dots,n_s]$-th reduced KP hierarchy and $W_{1+\infty}$ constraints
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 32-42
%V 104
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a3/
%G en
%F TMF_1995_104_1_a3
J. van de Leur. The $[n_1,n_2,\dots,n_s]$-th reduced KP hierarchy and $W_{1+\infty}$ constraints. Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 1, pp. 32-42. http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a3/

[1] M. Adler and P. van Moerbeke, “A Matrix Integral Solution to Two-dDmensional $W_p$-Gravity”, Comm. Math. Phys., 147 (1992), 25–56 | DOI | MR | Zbl

[2] E. Date, M. Jimbo, M. Kashiwara and T. Miwa, “Operator approach to the Kadomtsev-Petviashvili equation. Transformation groups for soliton equations. III”, J. Phys. Soc. Japan, 50 (1981), 3806–3812 | DOI | MR | Zbl

[3] E. Date, M. Jimbo, M. Kashiwara and T. Miwa, “Transformation groups for soliton equations. Euclidean Lie algebras and reduction of the KP hierarchy”, Publ. Res. Inst. Math. Sci., 18 (1982), 1077–1110 | DOI | MR | Zbl

[4] E. Date, M. Jimbo, M. Kashiwara and T. Miwa, “Transformation groups for soliton equations”, Nonlinear integrable systems-classical theory and quantum theory, eds. M. Jimbo and T. Miwa, World Scientific, 1983, 39–130 | MR

[5] L.A. Dickey, Additional symmetries of KP, Grassmaninan, and the string equation II, University of Oklahoma, 1992 | MR

[6] M. Fukuma, H. Kawai and R. Nakayama, “Infinite Dimensional Grassmannian Structure of Two-Dimensional Quantum Gravity”, Comm. Math. Phys., 143 (1992), 371–403 | DOI | MR | Zbl

[7] J. Goeree, “$W$-cinstraints in 2d quantum gravity”, Nucl. Phys., B358 (1991), 737–157 | DOI | MR

[8] M. Jimbo and T. Miwa, “Solitons and infinite dimensional Lie algebras”, Publ. Res. Inst. Math. Sci., 19 (1983), 943–1001 | DOI | MR | Zbl

[9] V.G. Kac, “Infinite dimensional Lie algebras”, Progress in Math., 44, Brikhäuser, Boston, 1983 ; ; 2nd ed. Cambridge Univ. Press, 1985 ; 3d ed., Cambridge Univ. Press, 1990 | MR | Zbl

[10] V.G. Kac and D.H. Peterson, “112 constructions of the basic representation of the lopp group of $E_8g$”, Proc. of the Symposium “Anomalies, Geometry, Topology”, Argonne,eds. . W.A. Bardeen, A.R. White, World Scientific, 1985, 276–298 | MR

[11] V.G. Kac and D.H. Peterson, “Lectures on the infinite wedge representation and the MKP hierarchy”, Sem. Math. Sup., 102 (1986), 141–184, Presses Univ. Montreal, Montreal | MR

[12] V.G. Kac and A.K. Raina, “Bombay lectures on highest weight representations of infinite- dimensional Lie algebras”, Advanced Ser. in Math. Phys., 2, World Scientific, 1987 | MR | Zbl

[13] V. Kac and A. Radul, “Quasifinite highest weight modules over the Lie algebra of differential operators on the circle”, Comm. Math. Phys., 157 (1993), 429–457 | DOI | MR | Zbl

[14] V. Kac and J. van de Leur, “The $n$-Component KP hierarchy and Representation Theory”, Important Developments in Soliton Theory, Springer Series in Nonlinear Dynamics, eds. A.S. Fokas and V.E. Zakharov, 1993, 302–343 | DOI | MR | Zbl

[15] J. Lepowsky, “Calculus of twisted vertex operators”, Proc. Nat. Acad. Sci. U.S.A., 82 (1985), 8295–8299 | DOI | MR | Zbl

[16] A. O. Radul, “Lie algebras of differential operators, their central extensions and W-algebras”, Punct. Anal, and its Appl., 25 (1991), 33–49 | MR | Zbl

[17] F. ten Kroode and J. van de Leur, “Bosonic and fermionic realizations of the affine algebra $gl_n$”, Comm. Math. Phys., 137 (1991), 67–107 | DOI | MR | Zbl

[18] J. van de Leur, KdV-type hierarchies, the string equation and $W_{1+\infty}$ constraint //, , Utrecht University hep-th/9403080 | MR