@article{TMF_1995_104_1_a3,
author = {J. van de Leur},
title = {The $[n_1,n_2,\dots,n_s]$-th reduced {KP} hierarchy and $W_{1+\infty}$ constraints},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {32--42},
year = {1995},
volume = {104},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a3/}
}
J. van de Leur. The $[n_1,n_2,\dots,n_s]$-th reduced KP hierarchy and $W_{1+\infty}$ constraints. Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 1, pp. 32-42. http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a3/
[1] M. Adler and P. van Moerbeke, “A Matrix Integral Solution to Two-dDmensional $W_p$-Gravity”, Comm. Math. Phys., 147 (1992), 25–56 | DOI | MR | Zbl
[2] E. Date, M. Jimbo, M. Kashiwara and T. Miwa, “Operator approach to the Kadomtsev-Petviashvili equation. Transformation groups for soliton equations. III”, J. Phys. Soc. Japan, 50 (1981), 3806–3812 | DOI | MR | Zbl
[3] E. Date, M. Jimbo, M. Kashiwara and T. Miwa, “Transformation groups for soliton equations. Euclidean Lie algebras and reduction of the KP hierarchy”, Publ. Res. Inst. Math. Sci., 18 (1982), 1077–1110 | DOI | MR | Zbl
[4] E. Date, M. Jimbo, M. Kashiwara and T. Miwa, “Transformation groups for soliton equations”, Nonlinear integrable systems-classical theory and quantum theory, eds. M. Jimbo and T. Miwa, World Scientific, 1983, 39–130 | MR
[5] L.A. Dickey, Additional symmetries of KP, Grassmaninan, and the string equation II, University of Oklahoma, 1992 | MR
[6] M. Fukuma, H. Kawai and R. Nakayama, “Infinite Dimensional Grassmannian Structure of Two-Dimensional Quantum Gravity”, Comm. Math. Phys., 143 (1992), 371–403 | DOI | MR | Zbl
[7] J. Goeree, “$W$-cinstraints in 2d quantum gravity”, Nucl. Phys., B358 (1991), 737–157 | DOI | MR
[8] M. Jimbo and T. Miwa, “Solitons and infinite dimensional Lie algebras”, Publ. Res. Inst. Math. Sci., 19 (1983), 943–1001 | DOI | MR | Zbl
[9] V.G. Kac, “Infinite dimensional Lie algebras”, Progress in Math., 44, Brikhäuser, Boston, 1983 ; ; 2nd ed. Cambridge Univ. Press, 1985 ; 3d ed., Cambridge Univ. Press, 1990 | MR | Zbl
[10] V.G. Kac and D.H. Peterson, “112 constructions of the basic representation of the lopp group of $E_8g$”, Proc. of the Symposium “Anomalies, Geometry, Topology”, Argonne,eds. . W.A. Bardeen, A.R. White, World Scientific, 1985, 276–298 | MR
[11] V.G. Kac and D.H. Peterson, “Lectures on the infinite wedge representation and the MKP hierarchy”, Sem. Math. Sup., 102 (1986), 141–184, Presses Univ. Montreal, Montreal | MR
[12] V.G. Kac and A.K. Raina, “Bombay lectures on highest weight representations of infinite- dimensional Lie algebras”, Advanced Ser. in Math. Phys., 2, World Scientific, 1987 | MR | Zbl
[13] V. Kac and A. Radul, “Quasifinite highest weight modules over the Lie algebra of differential operators on the circle”, Comm. Math. Phys., 157 (1993), 429–457 | DOI | MR | Zbl
[14] V. Kac and J. van de Leur, “The $n$-Component KP hierarchy and Representation Theory”, Important Developments in Soliton Theory, Springer Series in Nonlinear Dynamics, eds. A.S. Fokas and V.E. Zakharov, 1993, 302–343 | DOI | MR | Zbl
[15] J. Lepowsky, “Calculus of twisted vertex operators”, Proc. Nat. Acad. Sci. U.S.A., 82 (1985), 8295–8299 | DOI | MR | Zbl
[16] A. O. Radul, “Lie algebras of differential operators, their central extensions and W-algebras”, Punct. Anal, and its Appl., 25 (1991), 33–49 | MR | Zbl
[17] F. ten Kroode and J. van de Leur, “Bosonic and fermionic realizations of the affine algebra $gl_n$”, Comm. Math. Phys., 137 (1991), 67–107 | DOI | MR | Zbl
[18] J. van de Leur, KdV-type hierarchies, the string equation and $W_{1+\infty}$ constraint //, , Utrecht University hep-th/9403080 | MR