Lattice gauged principal chiral field at large $N$
Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 1, pp. 25-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The lattice model of a principal chiral field interacting with gauge fields which have no kinetic term is considered. The complete set of equations for collective field variables is derived in the large $N$ limit. The continuum limit and the phase structure of the model are discussed.
@article{TMF_1995_104_1_a2,
     author = {K. L. Zarembo},
     title = {Lattice gauged principal chiral field at large~$N$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {25--31},
     year = {1995},
     volume = {104},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a2/}
}
TY  - JOUR
AU  - K. L. Zarembo
TI  - Lattice gauged principal chiral field at large $N$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 25
EP  - 31
VL  - 104
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a2/
LA  - en
ID  - TMF_1995_104_1_a2
ER  - 
%0 Journal Article
%A K. L. Zarembo
%T Lattice gauged principal chiral field at large $N$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 25-31
%V 104
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a2/
%G en
%F TMF_1995_104_1_a2
K. L. Zarembo. Lattice gauged principal chiral field at large $N$. Teoretičeskaâ i matematičeskaâ fizika, Tome 104 (1995) no. 1, pp. 25-31. http://geodesic.mathdoc.fr/item/TMF_1995_104_1_a2/

[1] V.A. Kazakov and A.A. Migdal, Nucl Phys., B397 (1993), 214 | DOI | MR

[2] A.A. Migdal, Mod. Phys. Lett., A8 (1993), 139; 245; 359 | DOI | MR

[3] D.J. Gross, Phys. Lett., B293 (1992), 181 | DOI

[4] M.I. Dobroliubov, Yu. Makeenko and G.W. Semenoff, Mod. Phys. Lett., A8 (1993), 2387 | DOI | MR | Zbl

[5] D.V. Boulatov, $QCD$ on a tree, preprint NBI-HE-94-24, April, 1994

[6] K. Zarembo, Collective field approach to gauged principal chiral field at large $N$, preprint SMI-94-7, May, 1994

[7] M. Billo, M. Caselle, A. D'Adda, L. Magnea and S. Panzeri, Deconfinement transition in large $N$ lattice gauge theory, preprint DFTT 30/94/SISSA 103/94/EP, July 1994

[8] A.M. Polyakov, Phys. Lett., B72 (1978), 477 ; L. Susskind, Phys. Rev., D20 (1979), 2610 | DOI | MR

[9] A. Jevicki and B. Sakita, Nucl. Phys., B165 (1980), 511 ; S. Das and A. Jevicki, Mod. Phys. Lett., A5 (1990), 1639 | DOI | MR | DOI | MR | Zbl

[10] A. Jevicki and B. Sakita, Phys. Rev., D22 (1980), 467

[11] L.B. Frenkel, Invent. Math., 77 (1984), 301 ; D. Altschuler and C. Itzykson, Ann. Inst. Henri Poincare, Phys. Theor., 54 (1991), 1 | DOI | MR | Zbl | MR | Zbl

[12] E. Brezin, C. Itzykson, G. Parisi and J.-B. Zuber, Commun. Math. Phys., 59 (1978), 35 | DOI | MR | Zbl

[13] C. Itzykson and J.-B. Zuber, J. Math. Phys., 21 (1980), 411 | DOI | MR | Zbl

[14] [14] A. Matytsin, Nucl. Phys., B411 (1994), 805 | DOI | MR | Zbl

[15] E.M. Lifshitz and L.P. Pitaevskii, Statistical Physics, part 2, Nauka, Moscow, 1978 (in Russian)

[16] S.R. Wadia, Phys. Lett., B93 (1980), 403 | DOI | MR

[17] D. Gross and E. Witten, Phys. Rev., D21 (1980), 446

[18] K. Zarembo, Phys. Lett., B321 (1994), 234 | DOI | MR

[19] S. Aoki and A. Gocksch, Nucl. Phys., B404 (1993), 173 | DOI | MR | Zbl

[20] B. Svetitsky, L.G. Yaffe, Nucl. Phys., B210 (1982), 423 | DOI